V. 2004 303(d) List, Assessment Categories, and TMDL Schedule

While Chapter IV provides a comprehensive look at Arizona's water quality assessment, it is primarily useful for looking up information on specific waters. So how does Arizona summarize its water quality findings? It would take a good deal of time, for example, to find out from Chapter IV just how many waters are assessed as "impaired," or to find just those waters that are assessed as "attaining all uses." This chapter provides a summary of the state's water quality assessment to the public and to EPA, beginning with a map of the state's "impaired" and "not attaining" waters.

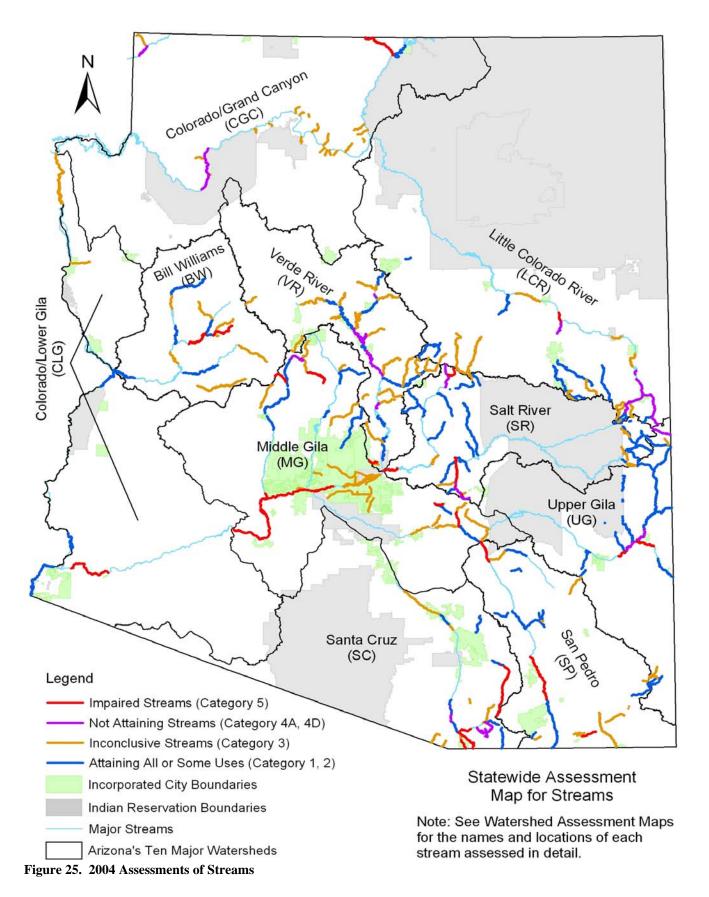
Location of "Impaired" and "Not Attaining" Waters – On page V-3, Map 14 shows the location of "impaired" and "not attaining" waters in Arizona. Knowing the location of these waters is important. These lakes and stream reaches have been identified by ADEQ as those with the most severe water quality problems. Permit requirements for discharge to these waters will be much more strict, and permits may take more time to obtain. ADEQ must be sure that any new discharges, or discharge modifications, will not degrade water quality any further. These waters will also receive priority for funding of water quality improvement projects. Note that this map illustrates those waters identified by the state as impaired or not attaining. EPA has the authority to add (or remove) waters from these lists upon submittal (see explanation in Chapter IV, EPA's Additions to the 303(d) List). The final, EPA-approved lists and map will be posted on ADEQ's website when they are completed (www.adeq.state.az.us).

The Five Category Assessment List – Surface waters assessed in 2004 are organized by Category in **Tables 26 through 30**.

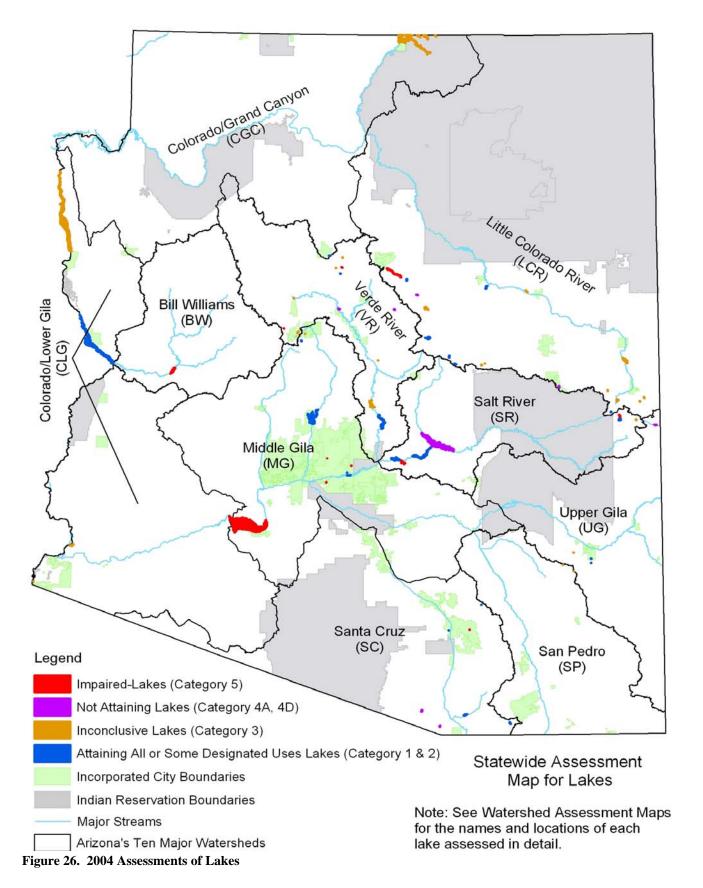
- Category 1 Surface waters assessed as "attaining all uses." All designated uses are assessed as "attaining."
- Category 2 Surface waters assessed as "attaining some uses." Each designated use is assessed as either "attaining," "inconclusive," or "threatened."
- Category 3 Surface waters assessed as "inconclusive." All designated uses are assessed as "inconclusive" due to insufficient data to assess any designated use (e.g., insufficient samples or core parameters). By default, this category would include waters that were "not assessed" for similar reasons. (See note below.)

- Category 4 Surface waters assessed as "not attaining." At least one designated use was assessed as "not attaining" and no uses were assessed as "impaired." A Total Maximum Daily Load (TMDL) analysis will not be required at this time for one of the following reasons:
 - **4 A.** A TMDL has already been completed and approved by EPA but the water quality standards are not yet attained;
 - **4 B.** Other pollution control requirements are reasonably expected to result in the attainment of water quality standards by the next regularly scheduled listing cycle; or
 - **4 C.** The impairment is <u>not</u> related to a "pollutant" loading but rather due to "pollution" (e.g., hydrologic modification).
 - **4 D.** The surface water would be impaired under the former turbidity standard (repealed in 2002).
- Category 5 Surface waters assessed as "impaired." At least one designated use was assessed as "impaired" by a pollutant. These waters must be prioritized for TMDL development (Table 32).

Category 5 - 303(d) List


The 303(d) List identifies, by surface water segment, the pollutants or surface water characteristics not meeting surface water quality standards. The 303(d) List is a list of all impaired waters that require more than existing technology and permit controls to achieve or maintain surface water quality standards. EPA must approve this list and has the authority to add or remove surface waters from the list based on the federal Clean Water Act, regulations, or noticies

The objective is to systematically identify impaired surface waters and the pollutant(s) causing the impairment and ultimately establish a scientifically-based strategy (a TMDL) for restoring the surface water quality.


The status of TMDLs in progress or completed are highlighted in Chapter VIII. TMDL investigations have been initiated or completed on many of the surface waters on the 2002 303(d) List.

The five part list assists the state in identifying monitoring needs. For example, Category 1 waters will be monitored as part of the rotating watershed cycle as resources allow; while Category 2, 3, and 4 waters are placed on the Planning List and targeted for further monitoring over the next two watershed cycles. Category 5 waters are placed on the 303(d) List and scheduled for monitoring to support development of a TMDL; however, most of them also have water quality concerns that will also require targeted monitoring, so they are also on the Planning List. Surface waters can move from one category to another. The objective is to eventually have all surface waters attaining uses.

Note that many surface waters in Arizona could not be assessed because no water quality data or information has been collected during the monitoring period covered by this assessment. By default, all of these waters would be included in Category 3. These waters are not specifically named in this report, except for those placed on the Planning List in 2002. Once placed on the Planning List, these waters remain on the Planning List and appear in Category 3 until sufficient data are collected to make a complete assessment of all uses. Most surface waters lacking monitoring data are ephemeral or only flow for a short time, making it difficult to collect sufficient water quality data. As discussed in Chapter VIII, ADEQ's Ambient Monitoring Program is attempting to monitor and assess all perennial waters.

V-3

Assessment Categories and Planning List

Table 25. Category 5 – Impaired Waters Requiring a TMDL

At Least One Designated Use Assessed as "Impaired" 2004 303(d) List Submitted to EPA April 2004

Surface Water	Reach or Lake Number	On 2004 Planning List Pollutants or Parameters of Concern		On the 2004 303(d) List Pollutants or Parameters of Concern		
Bill Williams Watershed						
Alamo Lake	AZL15030204-0040	Yes:	Missing core parameters	Yes:	Mercury in fish tissue (EPA*), pH (high)	
Boulder Creek unnamed wash at 34E41'14"/113E18'00" - Wilder Creek	AZ15030202-006B	Yes:	Copper, missing core parameters	Yes:	Adding mercury	
Boulder Creek Wilder Creek - Copper Creek	AZ15030202-005A	Yes:	Selenium, missing core parameters	Yes:	Arsenic, copper, zinc, adding mercury	
Burro Creek Boulder Creek - Black Canyon	AZ15030202-004	No		Yes:	Adding mercury	
Colorado - Grand Canyon Watershed						
Paria River Utah border - Colorado River	AZ14070007-123	Yes:	Escherichia coli, lead, suspended sediment concentration, turbidity (4D**)	Yes:	Adding selenium	
Colorado - Lower Gila Watershed						
Gila River Coyote Wash - Fortuna Wash	AZ15070201-003	No		Yes:	Adding boron, adding selenium	
Painted Rock Borrow Pit Lake	AZL15070201-1010	Yes:	Ammonia, pH (high), missing core parameters	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*), dissolved oxygen	
Little Colorado - San Juan Watershed						
Lake Mary (lower)	AZL15020015-0890	Yes:	Insufficient water monitoring	Yes:	Mercury in fish tissue (EPA*)	
Lake Mary (upper)	AZL15020015-0900	Yes:	Turbidity, insufficient water monitoring	Yes:	Mercury in fish tissue (EPA*)	
Little Colorado River Silver Creek - Carr Wash	AZ15020002-004	Yes:	Lead, turbidity/SSC (4D**)	Yes:	Adding Escherichia coli	
Little Colorado River Porter Tank - McDonalds Wash	AZ15020008-017	Yes:	Suspended sediment concentration, missing core parameters	Yes:	Copper, silver	

Surface Water	Reach or Lake Number	On 2004 Planning List Pollutants or Parameters of Concern			On the 2004 303(d) List Pollutants or Parameters of Concern	
Middle Gila Watershed						
Alvord Park Lake	AZL15060106B-0050	Yes:	Escherichia coli, missing core parameters	Yes:	Adding ammonia	
Chaparral Lake	AZL15060106B-0300	Yes:	Missing core parameters	Yes:	Adding dissolved oxygen, adding Escherichia coli	
Cortez Park Lake	AZL15060106B-0410	Yes:	Fish kill (1999), missing core parameters	Yes:	Adding dissolved oxygen, adding pH (high)	
French Gulch headwaters - Hassayampa River	AZ15070103-239	Yes:	Missing core parameters	Yes:	Copper, zinc	
Gila River Salt River - Agua Fria River	AZ15070101-015	No		Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	
Gila River Agua Fria River - Waterman Wash	AZ15070101-014	Yes:	Insufficient monitoring	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	
Gila River Waterman Wash - Hassayampa River	AZ15070101-010	Yes:	Insufficient monitoring	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	
Gila River Hassayampa River - Centennial Wash	AZ15070101-009	Yes:	Insufficient monitoring	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	
Gila River Centennial Wash - Gillespie Dam	AZ15070101-008	Yes:	Turbidity/SSC (4D**)	Yes:	DDT metabolites, toxaphene, and chlordane in fish tissue (EPA*), boron, adding selenium	
Gila River Gillespie Dam - Rainbow Wash	AZ15070101-007	Yes:	Insufficient monitoring	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	
Gila River Rainbow Wash - Sand Tank	AZ15070101-005	Yes:	Insufficient monitoring	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	
Gila River Sand Tank - Painted Rocks Reservoir	AZ15070101-001	Yes:	Insufficient monitoring	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	
Hassayampa River Buckeye Canal - Gila River	AZ15070103-001B	Yes:	Turbidity/SSC	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	
Mineral Creek Devils Canyon - Gila River	AZ15050100-012B	Yes:	Turbidity/SSC (4D**), missing core parameters	Yes:	Copper, adding selenium	
Painted Rocks Reservoir	AZL15070101-1020A	Yes:	Insufficient monitoring	Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	
Queen Creek headwaters - Superior Mine WWTP	AZ15050100-014A	Yes:	Missing core parameters	Yes:	Copper	
Queen Creek Superior Mine WWTP - Potts Canyon	AZ15050100-014B	Yes:	Selenium, missing core parameters	Yes:	Adding copper	
Salt River 23 rd Ave WWTP - Gila River	AZ15060106B-001D	No		Yes:	DDT metabolites, toxaphene and chlordane in fish tissue (EPA*)	
Turkey Creek unnamed tributary at 34E19'28"/112E - Poland Creek	AZ15070102-036B	Yes:	Arsenic, lead, missing core parameters	Yes:	Cadmium, copper, zinc	

Surface Water	Reach or Lake Number	On 2004 Planning List Pollutants or Parameters of Concern			On the 2004 303(d) List Pollutants or Parameters of Concern			
Salt River Watershed								
Canyon Lake	AZL15060106A-0250	Yes:	Missing core parameters	Yes:	Adding dissolved oxygen			
Christopher Creek headwaters - Tonto Creek	AZ15060105-353	Yes:	Turbidity/SSC (4D**)	Yes:	Adding Escherichia coli			
Crescent Lake	AZL15060101-0420		Total nitrogen, fish kill (in 1998), missing core parameters	Yes:	pH (high, EPA*)			
Pinto Creek Ripper Spring - Roosevelt Lake	AZ15060103-018C	No		Yes:	Adding selenium			
Salt River Saguaro Lake - Verde River	AZ15060106A-003	Yes:	Escherichia coli	Yes:	Adding dissolved oxygen			
San Pedro - Willcox Playa - Rio Yaqui Watershed								
Mule Gulch Lavender Pit - Bisbee WWTP	AZ15080301-090B	Yes:	Lead, missing core parameters	Yes:	Copper, pH (low, EPA*)			
Mule Gulch Bisbee WWTP - Highway 80 Bridge	AZ15080301-090C	Yes:	Lead, missing core parameters	Yes:	Copper, zinc, pH (low), adding cadmium			
San Pedro River Babocomari Creek - Dragoon Wash	AZ15050202-003	No		Yes:	Adding Escherichia coli			
San Pedro River Dragoon Wash - Tres Alamos Wash	AZ15050202-002		Fecal coliform/ <i>Escherichia coli</i> , turbidity/SSC, missing core parameters	Yes:	Nitrate			
San Pedro River Aravaipa Creek - Gila River	AZ15050203-001	Yes:	Mercury, selenium	Yes:	Adding Escherichia coli			
Santa Cruz - Rio Magdalena - Rio Sonoyta								
Cienega Creek headwaters - Interstate 10	AZ15050302-006A	No		Yes:	Adding Escherichia coli			
Lakeside Lake	AZL15050302-0760		Ammonia, turbidity (4D**), missing core parameters	Yes:	Adding dissolved oxygen			
Nogales and East Nogales washes Mexico border - Potrero Creek	AZ15050301-011	Yes:	Ammonia, copper, turbidity/SSC (4D**)	Yes:	Chlorine, adding Escherichia coli			
Santa Cruz River Mexico border - Nogales WWTP	AZ15050301-010	No		Yes:	Escherichia coli			
Sonoita Creek 750 feet below WWTP - Santa Cruz River	AZ15050301-013C	Yes:	Copper	Yes:	Adding zinc			
Upper Gila Watershed		•						
Gila River Skully Creek - San Francisco River	AZ15040002-001	Yes:	Dissolved oxygen, lead	Yes:	Adding selenium			

5-Category Assessment Lists V- 7 Draft November 2003

Surface Water	Reach or Lake Number	On 2004 Planning List Pollutants or Parameters of Concern			On the 2004 303(d) List Pollutants or Parameters of Concern
Gila River Bonita Creek - Yuma Wash	AZ15040005-022	Yes:	Lead, turbidity/SSC (4D**)	Yes:	Adding <i>Escherichia coli</i>
Verde Watershed					
Grande Wash headwaters - Ashbrook Wash	AZ15060203-991	Yes:	Missing core parameters	Yes:	Adding Escherichia coli
Granite Basin Lake	AZL15060202-0580	Yes:	pH (high), ammonia, missing core parameters	Yes:	Dissolved oxygen (EPA*)
Whitehorse Lake	AZL15060202-1630	Yes:	Ammonia, turbidity (4D**), fish kill in 1999, missing core parameters	Yes:	Dissolved oxygen (EPA*)

Indicates that EPA placed the pollutant or parameter on the 2002 303(d) List, rather than ADEQ. Indicates that the water is also a Category 4D for turbidity (impaired under the former turbidity standard).

Table 26. Category 4 – Impaired Waters Not Requiring a TMDL (Not Attaining)

At Least One Designated Use Assessed as "Not Attaining" All Waters are On the Planning List for Follow Up Monitoring

- 4A = A TMDL has been approved by EPA but designated uses are not yet "attaining."
- 4B = Other pollution control requirements are expected to result in the attainment of water quality standards by the next regularly scheduled listing cycle (2 years currently).
- 4C = The impairment is not related to a "pollutant" loading, but caused by pollution (e.g., hydrologic modifications).
- 4D = Surface water would be "impaired" based on the former turbidity standard (Arizona created category for the 2004 assessment).

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern			
Bill Williams Watershed (no Category 4 waters)							
Colorado - Grand Canyon Watershed	Colorado - Grand Canyon Watershed						
Colorado River Parashant - Diamond Creek	AZ15010002-003	Yes 4D: Other:	Turbidity/SSC Selenium, missing core parameters	No			
Virgin River Beaver Dam Wash - Big Bend Wash	AZ15010010-003	Yes 4D: Other:	Turbidity/SSC Selenium, missing core parameters	No			
Colorado - Lower Gila Watershed (no Category 4 wa	aters)						
Little Colorado - San Juan Watershed							
Kinnikinick Lake	AZL15020015-0730	Yes 4D: Other:	Turbidity Selenium, missing core parameters	No			
Little Colorado River West Fork of the Little Colorado River - Water Canyon Creek	AZ15020001-011	Yes 4A:	Turbidity/SSC (TMDL approved for adjacent reaches in 2002)	No			
Little Colorado River Water Canyon Creek - Nutrioso Creek	AZ15020001-010	Yes 4A: Other:	Turbidity/SSC (TMDL approved in 2002) Insufficient monitoring	No			
Little Colorado River Nutrioso Creek - Carnero Wash	AZ15020001-009	Yes 4A: Other:	Turbidity/SSC (TMDL approved in 2002) Escherichia coli	No			
Little Colorado River unnamed reach (15020001-021) to Lyman Lake	AZ15020001-005	Yes 4A: Other:	Turbidity/SSC (TMDL approved for adjacent reaches in 2002) Escherichia coli	No			
Nutrioso Creek headwaters - Picnic Creek	AZ15020001-017	Yes 4A:	Turbidity/SSC (TMDL approved in 2000)	No			
Nutrioso Creek Picnic Creek - Little Colorado River	AZ15020001-015	Yes 4A: Other:	Turbidity/SSC (TMDL approved in 2000) Insufficient monitoring	No			
Rainbow Lake	AZL15020005-1170	Yes 4A: Other:	Nutrients and pH (TMDLs approved in 2000) Missing core parameters	No			
Silver Creek Seven Mile Draw - Little Colorado River	AZ15020005-001	Yes 4D: Other:	Turbidity/SSC Insufficient monitoring	No			

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Middle Gila Watershed				
Hassayampa River headwaters - Copper Creek	AZ15070103-007A	Yes 4A:	Cadmium, copper, zinc, and pH (TMDLs approved in 2002)	No
		Other:	Missing core parameters	
Hassayampa River, <u>unnamed tributary of</u> (trib to reach - 007A) headwaters - Hassayampa River	AZ15070102-417	Yes 4A: Other:	Cadmium, copper, zinc, and pH (loadings addressed in the Hassayampa TMDL approved in 2002) Missing core parameters, insufficient monitoring	No
Salt River Watershed				
Gibson Mine tributary headwaters - Pinto Creek	AZ15060103-887	Yes 4A: Other:	Copper (loading addressed in Pinto Creek copper TMDL approved in 2001) pH (low), zinc, missing core parameters	No
Pinto Creek headwater - tributary at 33E19'27"/110E54'56"	AZ15060103-018A	Yes 4A: Other:	Copper (TMDL approved in 2001) Insufficient monitoring	No
Pinto Creek tributary at 33E19'27"/110E54'56" - Ripper Spring	AZ15060103-018B	Yes 4A: Other:	Copper (TMDL approved in 2001) Selenium, zinc, missing core parameters	No
Roosevelt Lake	AZL15060103-1250	Yes 4D: Other:	Turbidity (related to 2002 fire) Missing core parameters	No
Tonto Creek headwaters - unnamed tributary at 34E18'10"/111E04'14"	AZ15060105-013A	Yes 4D: Other:	Turbidity/SSC Escherichia coli, nitrogen (annual mean)	No
Tonto Creek unnamed tributary at 34E18'10"/111E04'14" - Haigler Creek	AZ15060105-013B	Yes 4D: Other:	Turbidity/SSC Escherichia coli, nitrogen (annual mean)	No
San Pedro - Willcox Playa - Rio Yaqui Watershed (no Category 4 waters)			
Santa Cruz - Rio Magdalena - Rio Sonoyta				
Alum Gulch headwaters - 31E28'20"/110E43'51"	AZ15050301-561A	Yes 4A: Other:	Cadmium, copper, pH (low), zinc (TMDLs approved in 2003) Missing core parameter	No
Alum Gulch 31E28'20"/110E43'51" - 31E29'17"/110E44'25"	AZ15050301-561B	Yes 4A: Other:	Cadmium, copper, pH (low), zinc (TMDLs approved in 2003) Missing core parameters	No
Arivaca Lake	AZL15050304-0080	Yes 4A: Other:	Mercury in fish tissue (TMDL approved in 1999) Dissolved oxygen, pH (high), selenium, fish kill in 1999, missing core parameters	No
Cox Gulch headwaters - 3R Canyon	AZ15050301-560	Yes 4A: Other:	Cadmium, copper, zinc, and pH (low) (loadings included in 3R Canyon TMDLs approved in 2003) Missing core parameters	No

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Cox Gulch, <u>unnamed tributary of</u> headwaters - Cox Gulch	AZ15050301-877	Yes 4A: Other:	Cadmium, copper, zinc, and pH (low) (loadings included in 3R Canyon TMDLs approved in 2003) Insufficient monitoring	No
Harshaw Creek headwaters - Sonoita Creek	AZ15050301-025	Yes 4A: Other:	Copper and pH (low) (TMDLs approved in 2003) Missing core parameter	No
Harshaw Creek, <u>unnamed tributary of</u> (Endless Chain Mine tributary) headwaters - Harshaw Creek	AZ15050301-888	Yes 4A:	Copper and pH (low) (loadings included in TMDLs for Harshaw Creek approved in 2003)	No
Humbolt Canyon headwaters - Alum Gulch	AZ15050301-340	Yes 4A: Other:	Cadmium, copper, zinc, and pH (low) (TMDLs for Alum Gulch approved in 2003) Missing core parameters	No
Pena Blanca Lake	AZL15050301-1070	Yes 4A: Other:	Mercury in fish tissue (TMDL approved in 1999) pH (low), selenium, turbidity, missing core parameters	No
Santa Cruz River Josephine Canyon - Tubac Bridge	AZ15050301-008A	Yes 4D: Other:	Turbidity/SSC Chlorine, missing core parameters	No
Three R Canyon headwaters - 31E28'35"/110E46'19"	AZ15050301-558A	Yes 4A: Other:	Cadmium, copper, zinc, and pH (low) (TMDLs approved in 2003) Insufficient monitoring	No
Three R Canyon 31E28'35"/110E46'19"-31E28'27"/110E47'12"	AZ15050301-558B	Yes 4A: Other:	Cadmium, copper, zinc, and pH (low) (TMDLs approved in 2003) Missing core parameters	No
Three R Canyon 31E28'27"/110E47'12" - Sonoita Creek	AZ15050301-558C	Yes 4A: Other:	Copper and pH (low) (TMDLs approved in 2003) Missing core parameter	No
Three R Canyon, <u>unnamed tributary of</u> headwaters - Three R Canyon	AZ15050301-889	Yes 4A: Other:	Cadmium, copper, zinc, and pH (low) (loadings for this tributary included in the TMDLs for 3R Canyon approved in 2003) Insufficient monitoring	No
Upper Gila Watershed				
Gila River San Francisco River - Eagle Creek	AZ15040005-024	Yes 4D: Other:	Turbidity/SSC Insufficient monitoring	No
Gila River Eagle Creek - Bonita Creek	AZ15040005-023	Yes 4D: Other:	Turbidity/SSC Insufficient monitoring	No
Luna Lake	AZL15040004-0840	Yes 4A: Other:	Dissolved oxygen, pH (high), and a fish kill in 1999 (Nutrient TMDL approved in 2000. TMDL addressed low dissolved oxygen, high pH, and fish kills) Missing core parameters	No
San Francisco River headwaters - New Mexico border	AZ15040004-023	Yes 4D:	Turbidity/SSC	No

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
San Francisco River Limestone Gulch - Gila River	AZ15040004-001	Yes 4D: Other:	Turbidity/SSC Copper, <i>Escherichia coli</i>	No
Verde Watershed				
Beaver Creek Dry Beaver Creek - Verde River	AZ15060202-002	Yes 4D: Other:	Turbidity/SSC Missing core parameters	No
Oak Creek At Slide Rock State Park	AZ15060202-018B	Yes 4A: Other:	Escherichia coli and swimming closures (TMDL approved in 1999) Missing core parameters	No
Pecks Lake	AZL15060202-1060	Yes 4A: Other:	Dissolved oxygen (Nutrient TMDL approved in 2000 addressed low dissolved oxygen.) Missing core parameters	No
Stoneman Lake	AZL15060202-1490	Yes 4A: Other:	pH (high), (Nutrient TMDL approved in 2000 addressed high pH.) Arsenic, missing core parameters	No
Verde River Oak Creek - Beaver Creek	AZ15060202-015	Yes 4A: Other:	Turbidity/SSC (turbidity TMDL approved in 2002) Insufficient monitoring	No
Verde River Beaver Creek - HUC boundary 15060203	AZ15060202-001	Yes 4A: Other:	Turbidity/SSC (turbidity TMDL approved in 2002) Insufficient monitoring	No
Verde River West Clear Creek - Fossil Creek	AZ15060203-025	Yes 4A: Other:	Turbidity/SSC (turbidity TMDL approved in 2002 in adjacent reaches) Selenium	No
Verde River Tangle Creek - Ister Flat	AZ15060203-018	Yes 4D: Other:	Turbidity/SSC Escherichia coli	No

Table 27. Category 3 -- Inconclusive Waters

All Designated Uses Assessed as "Inconclusive" All Waters are On the Planning List for Follow Up Monitoring

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern			
Bill Williams Watershed							
Big Sandy River Deluge Wash - Tule Wash	AZ15030201-011	Yes:	Turbidity/SSC, missing core parameters	No			
Big Sandy River Rupley Wash - Alamo Lake North	AZ15030201-001	Yes:	Dissolved oxygen, missing core parameters	No			
Butte Creek headwaters - Burro Creek	AZ15030202-163	Yes:	Mercury, selenium, missing core parameters	No			
Date Creek Cottonwood Creek - unnamed tributary (15030203-008)	AZ15030203-003	Yes:	Insufficient monitoring	No			
Francis Creek headwaters - Burro Creek	AZ15030202-012	Yes:	Turbidity/SSC, insufficient monitoring	No			
Kirkland Creek Skull Valley - Santa Maria River	AZ15030203-015	Yes:	Escherichia coli, insufficient monitoring	No			
Wilder Creek headwaters - Boulder Creek	AZ15030202-007	Yes:	Missing core parameters	No			
Colorado - Grand Canyon Watershed							
Beaver Dam Wash Utah border - Virgin River	AZ15010010-009	Yes:	Insufficient monitoring	No			
Boucher Creek California border - Colorado River	AZ15010002-017	Yes:	Insufficient monitoring	No			
Chuar (Lava) Creek headwaters - Colorado River	AZ15010001-024B	Yes:	Insufficient monitoring	No			
Clear Creek headwaters - Colorado River	AZ15010001-025B	Yes:	Insufficient monitoring	No			
Crystal Creek headwaters - Colorado River	AZ15010002-018B	Yes:	Insufficient monitoring	No			
Deer Creek headwaters - Colorado River	A15010002-019B	Yes:	Insufficient monitoring	No			
Garden Creek headwaters - Colorado River	AZ15010002-841	Yes:	Insufficient monitoring	No			
Havasu Creek Little Coyote Creek - Colorado River	AZ15010004-001	Yes:	Turbidity/SSC, insufficient monitoring	No			

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Hermit Creek headwaters - Colorado River	AZ15010002-020B	Yes:	Insufficient monitoring	No
Kwagunt Creek headwaters - Colorado River	AZ15010001-031B	Yes:	Insufficient monitoring	No
Lake Powell	AZL14070006-1130	Yes:	Escherichia coli, missing core parameters	No
Monument Creek headwaters - Colorado River	AZ15010002-845	Yes:	Insufficient monitoring	No
Nankoweap Creek headwaters - Colorado River	AZ15010001-033B	Yes:	Insufficient monitoring	No
National Canyon Creek headwaters - Colorado River	AZ15010002-016	Yes:	Insufficient monitoring	No
Royal Arch Creek headwaters - Colorado River	AZ15010002-871	Yes:	Insufficient monitoring	No
Saddle Canyon Creek headwaters - Colorado River	AZ15010002-703B	Yes:	Insufficient monitoring	No
Shinumo Creek headwaters - Colorado River	AZ15010002-029B	Yes:	Insufficient monitoring	No
Spring Canyon Creek headwaters - Colorado River	AZ15010002-318	Yes:	Insufficient monitoring	No
Tapeats Creek headwaters - Colorado River	AZ15010002-696	Yes:	Insufficient monitoring	No
Three Springs Creek headwaters - Colorado River	AZ15010002-1180	Yes:	Insufficient monitoring	No
Vasey's Paradise (Spring) at Colorado River	AZ15010001-SP01	Yes:	Insufficient monitoring	No
Colorado - Lower Gila Watershed				
Colorado River Hoover Dam - Lake Mohave	AZ15030101-015	Yes:	Selenium, missing core parameters	No
Colorado River, <u>unnamed tributary</u> (near Thumb Butte) headwaters - Colorado River	AZ15030101-560	Yes:	Insufficient monitoring	No
Hunter's Hole (lake)	AZL15030108-0660	Yes:	Selenium, insufficient monitoring	No
Lake Mohave	AZL15030101-0960	Yes:	Insufficient monitoring	No
Mittry Lake	AZL15030107-0950	Yes:	Insufficient monitoring	No

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern				
Little Colorado - San Juan Watershed	Little Colorado - San Juan Watershed							
Black Canyon Lake	AZL15020008-0180	Yes:	Fish kill related to fire (2002), insufficient monitoring	No				
Brown Creek headwaters - Silver Creek	AZ15020005-016	Yes:	Insufficient monitoring	No				
Buck Springs Canyon headwaters - Leonard Canyon	AZ15020008-557	Yes:	pH (low), turbidity/SSC, insufficient monitoring	No				
Bunch Reservoir	AZL15020001-0230	Yes:	Dissolved oxygen, missing core parameters	No				
Carnero Lake	AZL15020001-0260	Yes:	Dissolved oxygen, pH (high), missing core parameters	No				
Chevelon Creek headwaters - West Chevelon Creek	AZ15020010-006	Yes:	Dissolved oxygen, insufficient monitoring	No				
Cholla Lake	AZL15020008-0320	Yes:	Fish kill (2002), missing core parameters	No				
Fish Creek headwaters - Little Colorado River	AZ15020001-211	Yes:	Mercury, insufficient monitoring	No				
Hall Creek headwaters - Little Colorado River	AZ15020001-012	Yes:	Insufficient monitoring	No				
Lee Valley Creek Lee Valley Reservoir - East Fork Little Colorado River	AZ15020001-232B	Yes:	Insufficient monitoring	No				
Little Colorado River HUC boundary 15020001 - unnamed trib. (15020002-025)	AZ15020002-024	Yes:	Insufficient monitoring	No				
Little Colorado River Zion Reservoir - Concho Creek	AZ15020002-004	Yes:	Suspended sediment concentration, missing core parameters	No				
Little Colorado River, South Fork headwaters - Little Colorado River	AZ15020001-027	Yes:	Insufficient monitoring	No				
Long Lake (lower)	AZL15020008-0820	Yes:	Mercury in fish tissue, insufficient seasonal coverage, missing core parameters	No				
Lyman Lake	AZL15020001-0850	Yes:	Mercury in fish tissue, insufficient water monitoring	No				
McKay Reservoir	AZL15020001-0007	Yes:	Dissolved oxygen, pH (high), insufficient monitoring	No				
Nelson Reservoir	AZL15020001-1000	Yes:	Insufficient monitoring	No				
Porter Creek headwaters - Show Low Creek	AZ15020005-246	Yes:	Turbidity/SSC, insufficient monitoring	No				
River Reservoir	AZL15020001-1220	Yes:	Missing core parameters	No				
Soldiers Annex Lake	AZL15020008-1430	Yes:	Mercury in fish tissue, insufficient water monitoring	No				
Soldiers Lake	AZL15020008-1440	Yes:	Mercury in fish tissue, insufficient water monitoring	No				

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern				
Tunnel Reservoir	AZL15020001-1550	Yes:	Dissolved oxygen, missing core parameters	No				
Walnut Creek Pine Lake - Rainbow Lake	AZ15020005-238	Yes:	Insufficient monitoring	No				
Willow Creek headwaters - East Clear Creek	AZ15020008-011	Yes:	Insufficient monitoring	No				
Willow Spring Creek headwaters - Chevelon Creek	AZ15020010-240	Yes:	Insufficient monitoring	No				
Woods Canyon Creek headwaters - Chevelon Creek	AZ15020010-084	Yes:	Dissolved oxygen, insufficient monitoring	No				
Middle Gila Watershed	Middle Gila Watershed							
Antelope Creek headwaters - Martinez Creek	AZ15070103-010	Yes:	Insufficient monitoring	No				
Arizona Canal Granite Reef Dam - Cholla WTP	AZ15060106B-099A	Yes:	Missing core parameters	No				
Arizona Canal Cholla WTP - HUC boundary 15070102	AZ15060106B-099B	Yes:	Missing core parameters	No				
Blue John Creek headwaters - unnamed tributary to Lynx Creek	AZ15070102-471	Yes:	Cadmium, copper, zinc, insufficient monitoring	No				
Buckeye Canal Gila River - South Extension Canal	AZ15070101-209	Yes:	DDE (DDT pesticide metabolite), missing core parameters	No				
Cash Mine Creek headwaters - Hassayampa River	AZ15070103-349	Yes:	Copper, zinc, insufficient monitoring	No				
Cash Mine Creek, <u>unnamed tributary of</u> headwaters - Cash Mine Creek	AZ15070103-415	Yes:	Cadmium, copper, lead, zinc, insufficient monitoring	No				
Consolidated Canal HUC boundary 15060106B - above WTP intake	AZ15050100-074A	Yes:	Missing core parameters	No				
Dripping Spring Wash headwaters - Gila River	AZ15050100-011	Yes:	Insufficient monitoring	No				
Eastern Canal WTP below Warner Road - terminus	AZ15050100-207B	Yes:	Missing core parameters	No				
Galena Gulch headwaters - Agua Fria River	AZ15070102-745	Yes:	Cyanide, insufficient monitoring	No				
Gila River Dripping Spring Wash - San Pedro River	AZ15050100-009	Yes:	Insufficient monitoring	No				
Gila River Mineral Creek - Donnelly Wash	AZ15050100-007	Yes:	Copper, turbidity/SSC, insufficient monitoring	No				

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Gila River Ashurst-Hayden Dam - Florence WWTP	AZ15050100-003B	Yes:	Copper, insufficient monitoring	No
Grand Canal HUC boundary 15070101 - New River	AZ15070102-250	Yes:	Missing core parameters	No
Indian Bend Wash headwaters - Salt River	AZ15060106B-179	Yes:	Lead, missing core parameters	No
Little Ash Creek headwaters - Ash creek	AZ15070102-039	Yes:	Insufficient monitoring	No
Lynx Creek headwaters - Agua Fria River	AZ15070102-033A	Yes:	Cadmium, copper, insufficient monitoring	No
Lynx Creek, <u>unnamed tributary of</u> headwaters - Lynx Creek	AZ15070102-124	Yes:	Cadmium, copper, zinc, insufficient monitoring	No
Martinez Canyon Creek headwaters - Box Canyon	AZ15050100-080	Yes:	Insufficient monitoring	No
Mineral Creek headwaters - Devils Canyon	AZ15050100-012A	Yes:	Insufficient monitoring	No
New River headwaters - Interstate 17	AZ15070102-006A	Yes:	Insufficient monitoring	No
Salt River 2 km below Granite Reef Dam - Interstate 10 bridge	AZ15060106B-001B	Yes:	Insufficient monitoring	No
South Canal Granite Reef Dam - Consolidated Canal	AZ15060106B-180	Yes:	Missing core parameters	No
Tempe Canal HUC boundary 15050100 - Western Canal	AZ15050100-115	Yes:	Missing core parameters	No
Turkey Creek headwaters - unnamed tributary at 34E19'28"/112E21'28"	AZ15070102-036A	Yes:	Missing core parameters	No
Western Canal Tempe Canal - HUC boundary 15050100	AZ15060106B-262	Yes:	Missing core parameters	No
Western Canal HUC boundary 15050100 - terminus	AZ15050100-990	Yes:	Missing core parameters	No
Fain Lake	AZL15070101-0005	Yes:	Turbidity, insufficient monitoring	No
Salt River Watershed				
Bear Wallow Creek, <u>North Fork</u> headwaters - Bear Wallow Creek	AZ15060101-022	Yes:	Missing core parameters	No
Bear Wallow Creek, <u>South Fork</u> headwaters - Bear Wallow Creek	AZ15060101-258	Yes:	Insufficient monitoring	No

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Bloody Tanks Wash Schultz Ranch - Miami Wash	AZ15060103-034B	Yes:	Copper, insufficient monitoring	No
Cottonwood Canyon headwaters - Pinto Creek	AZ15060103-891	Yes:	Insufficient monitoring	No
Gold Gulch Canyon headwaters - Pinto Creek	AZ15060103-894	Yes:	Insufficient monitoring	No
Hay Creek headwaters - West Fork Black River	AZ15060101-353	Yes:	Insufficient monitoring	No
Miller Springs Canyon headwaters - Pinto Creek	AZ15060103-892	Yes:	Selenium, turbidity/SSC, missing core parameters	No
Pinto Creek, West Fork headwaters - Pinto Creek	AZ15060103-066	Yes:	Insufficient monitoring	No
Reservation Creek headwaters - Black River	AZ15060101-010	Yes:	Insufficient monitoring	No
Salt River Roosevelt Lake - Apache Lake	AZ15060106A-024	Yes:	Insufficient monitoring	No
Snake Creek headwaters - Black River	AZ15060101-045	Yes:	Missing core parameters	No
Stinky Creek Fort Apache Reservation - West Fork Black River	AZ15060101-352A	Yes:	Missing core parameters	No
Lake Sierra Blanca	AZL15060101-1390	Yes:	Fish kill (1998), insufficient monitoring	No
San Pedro - Willcox Playa - Rio Yaqui Watershed				
Aravaipa Canyon Creek Wilderness boundary - San Pedro River	AZ15050203-004C	Yes:	Missing core parameters	No
Bass Canyon, <u>unnamed tributary of</u> headwaters - Bass Canyon Creek	AZ15050203-935	Yes:	Insufficient monitoring	No
C Canyon headwaters - Mule Gulch	AZ15080301-342	Yes:	Insufficient monitoring	No
Dubacher Canyon headwaters - Mule Gulch	AZ15080301-075	Yes:	Insufficient monitoring	No
Grant Creek headwaters - High Creek	AZ15050201-033	Yes:	Insufficient monitoring	No
Hendricks Gulch headwaters - Mule Gulch	AZ15080301-335	Yes:	Insufficient monitoring	No
Leslie Canyon Creek headwaters - Whitewater Draw	AZ15080301-007	Yes:	Insufficient monitoring	No

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Miller Canyon Creek headwaters - San Pedro River	AZ15050202-409A	Yes:	Insufficient monitoring	No
Morales Creek headwaters - Mule Gulch	AZ15080301-331	Yes:	Insufficient monitoring	No
Mule Gulch headwaters - Lavender Pit	AZ15080301-090A	Yes:	Missing core parameters	No
Mural and Grassy Hill tributary headwaters - Mule Gulch	AZ15080301-334	Yes:	Insufficient monitoring	No
OK and Youngblood tributary headwaters - Brewery Gulch	AZ15080301-xxx	Yes:	Insufficient monitoring	No
Spring Canyon Creek headwaters - Mule Gulch	AZ15080301-333	Yes:	Insufficient monitoring	No
Ward Canyon Creek headwaters - Turkey Creek	AZ15050201-433	Yes:	Insufficient monitoring	No
Whitewater Draw Gadwell Canyon - unnamed tributary (15080301-003)	AZ15080301-004	Yes:	Lead, insufficient monitoring	No
Whitewater unnamed tributary (15080301-003) - unnamed tributary at 31E20'36"/109E34'46"	AZ15080301-002A	Yes:	Lead, zinc, insufficient monitoring	No
Winwood Canyon headwaters - Mule Gulch	AZ15080301-340	Yes:	Insufficient monitoring	No
Riggs Flat Lake	AZL15050201-1210	Yes:	Turbidity, insufficient monitoring	No
Snow Flat Lake	AZL15050201-1420	Yes:	Insufficient monitoring	No
Twin Pond	AZL15080302-0001	Yes:	Insufficient monitoring	No
Santa Cruz - Rio Magdalena - Rio Sonoyta				
Chimenea Creek headwaters - Rincon Creek	AZ15050302-140	Yes:	Insufficient monitoring	No
Loma Verde Wash headwaters - unnamed tributary to Tanque Verde Wash	AZ15050302-268	Yes:	Insufficient monitoring	No
Madera Canyon Creek headwaters - tributary at 31E43'42" / 110E52'50"	AZ15050301-322A	Yes:	Insufficient monitoring	No
Madrona Creek headwaters - Rincon Creek	AZ15050302-138	Yes:	Insufficient monitoring	No
Pena Blanca Canyon Creek Mexico border - Pena Blanca Lake	AZ15050301-808	Yes:	Insufficient monitoring	No

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Potrero Creek Interstate 19 - Santa Cruz River	AZ15050301-500B	Yes:	Chlorine, copper, missing core parameters	No
Santa Cruz River Roger Road WWTP outfall - Rillito Creek	AZ15050301-003B	Yes:	Missing core parameters	No
Santa Cruz River HUC boundary 15050303 - Baumgartner Road	AZ15050303-005A	Yes:	Missing core parameters	No
Sonoita Creek headwaters - Patagonia WWTP	AZ15050301-013A	Yes:	Insufficient monitoring	No
Sycamore Creek headwaters - Mexico border	AZ15080200-002	Yes:	Insufficient monitoring	No
Upper Gila Watershed				
Cave Creek, North Fork headwaters - Cave Creek	AZ15040006-856	Yes:	Insufficient monitoring	No
East Turkey Creek headwaters - unnamed tributary at 31E58'22"/109E12'17"	AZ15040006-837A	Yes:	Insufficient monitoring	No
Turkey Creek headwaters - Campbell Blue Creek	AZ15040004-060	Yes:	Missing core parameters	No
Cluff Pond #3	AZL15040005-0370	Yes:	Insufficient monitoring	No
Verde Watershed				
Apache Creek headwaters - Walnut Creek	AZ15060201-019	Yes:	Insufficient monitoring	No
Bitter Creek Jerome WWTP - 2.5 miles below WWTP	AZ15060202-066B	Yes:	Insufficient monitoring	No
Bitter Creek, unnamed tributary of headwaters - Bitter Creek	AZ15060202-868	Yes:	Cadmium, copper, pH (low), zinc, insufficient monitoring	No
Camp Creek headwaters - Verde River	AZ15060203-031	Yes:	Insufficient monitoring	No
Colony Wash headwaters - Verde River	AZ15060203-998	Yes:	Insufficient monitoring	No
East Verde River headwaters - Ellison Creek	AZ15060203-022A	Yes:	Turbidity/SSC, insufficient monitoring	No
Ellison Creek headwaters - East Verde River	AZ15060203-459	Yes:	Insufficient monitoring	No
Fossil Creek headwaters - Verde River	AZ15060203-459	Yes:	Insufficient monitoring	No

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Granite Creek headwaters - 15060202-060	AZ15060202-059A	Yes:	Escherichia coli, dissolved oxygen, mercury, turbidity/SSC, missing core parameters	No
Munds Creek headwaters - Oak Creek	AZ15060202-415	Yes:	Missing core parameters, insufficient seasonal coverage	No
Oak Creek headwaters - West Fork Oak Creek	AZ15060202-019	Yes:	Turbidity/SSC, missing core parameters	No
Oak Creek Dry Creek - Spring Creek	AZ15060202-017	Yes:	Insufficient monitoring	No
Oak Creek Spring Creek - Verde River	AZ15060202-016	Yes:	Insufficient monitoring	No
Oak Creek, West Fork	AZ15060202-020	Yes:	Insufficient monitoring	No
Pine Creek headwaters - unnamed tributary at 34E21'51"/111E26'46	AZ15060203-049A	Yes:	Insufficient monitoring	No
Pine Creek unnamed tributary at 34E21'51"/111E26'46 - East Verde River	AZ15060203-049B	Yes:	Insufficient monitoring	No
Roundtree Creek headwaters - Tangle Creek	AZ15060203-853	Yes:	Insufficient monitoring	No
Spring Creek Coffee Creek - Oak Creek	AZ15060202-022	Yes:	Insufficient monitoring	No
Sycamore Creek Tule Canyon - Cedar Creek	AZ15060202-026	Yes:	Insufficient monitoring	No
Sycamore Creek headwaters - Verde River	AZ15060203-055	Yes:	Insufficient monitoring	No
Verde River Granite Creek - Hall Creek	AZ15060202-052	Yes:	Insufficient monitoring	No
Verde River Hell Canyon - unnamed reach number 15060202-065	AZ15060202-038	Yes:	Insufficient monitoring	No
Webber Creek headwaters - East Verde River	AZ15060203-058	Yes:	Insufficient monitoring	No
West Clear Creek Meadow Canyon - Verde River	AZ15060203-026B	Yes:	Missing core parameters	No
Wet Beaver Creek Long Canyon - Rarick Canyon	AZ15060202-004	Yes:	Missing core parameters	No
Wet Beaver Creek Rarick Canyon - Dry Beaver Creek	AZ15060202-003	Yes:	Insufficient monitoring	No
Wet Bottom Creek headwaters - Verde River	AZ15060203-020	Yes:	Insufficient monitoring	No

Surface Water	Reach or Lake Number		On the 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Fountain Lake	AZL15060203-0003	Yes:	Insufficient monitoring	No
Green Valley Lake	AZL15060203-0015	Yes:	Insufficient monitoring	No
Horseshoe Reservoir	AZL15060203-0620	Yes:	Turbidity, missing core parameters	No
Perkins Tank	AZL15060202-1080	Yes:	Dissolved oxygen, turbidity, insufficient monitoring	
Scholze Lake	AZL15060202-1350	Yes:	Dissolved oxygen, lead, nitrogen, turbidity, missing core parameters	No
Stehr Lake	AZL15060203-1480	Yes:	Insufficient monitoring	No
Sullivan Lake	AZL15060202-3370	Yes:	pH (high), insufficient monitoring	No
Watson Lake	AZL15060202-1590	Yes:	Dissolved oxygen, pH (high), nitrogen, fish kill, missing core parameters	No

Table 28. Category 2 -- Attaining Some Uses

At least One Designated Use Assessed as "Attaining" and All Others are "Inconclusive" All Waters are On the Planning List for Follow Up Monitoring

Surface Water	Reach or Lake Number		On 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Bill Williams Watershed				
Big Sandy River Sycamore Creek - Burro Creek	AZ15030201-004	Yes:	Selenium	No
Bill Williams River Point B - Colorado River	AZ15030204-001	Yes:	Turbidity/SSC, missing core parameters	No
Boulder Creek Copper Creek - Burro Creek	AZ15030202-005B	Yes:	Mercury, selenium, missing core parameters	No
Burro Creek Francis Creek - Boulder Creek	AZ15030202-008	Yes:	Copper, mercury, missing core parameters	No
Santa Maria River Bridle Wash - Date Creek	AZ15030203-009	Yes:	Escherichia coli	No
Colorado - Grand Canyon Watershed				
Colorado River Lake Powell - Paria River	AZ14070006-001	Yes:	Missing core parameters	No
Dogtown Reservoir	AZL15010004-0480	Yes:	Selenium, dissolved oxygen, pH (high), turbidity, missing core parameters	No
Colorado - Lower Gila Watershed				
Colorado River Indian Wash - Imperial Dam	AZ15030104-001	Yes:	Suspended sediment concentration	No
Colorado River Main Canal - Mexico border	AZ15030107-001	Yes:	Suspended sediment concentration	No
Lake Havasu	AZL15030101-0590A	Yes:	Mercury, selenium, Escherichia coli	No
Little Colorado - San Juan Watershed				
Ashurst Lake	AZL15020015-0090	Yes:	Turbidity, missing core parameters	No
Barbershop Canyon Creek headwaters - East Clear Creek	AZ15020008-537	Yes:	Missing core parameter	No
Bear Canyon Lake	AZL15020008-0130	Yes:	Dissolved oxygen, pH (low), selenium, missing core parameters	No
Billy Creek headwaters - Show Low Creek	AZ15020005-019	Yes:	Escherichia coli, turbidity/SSC, missing core parameter	No
Blue Ridge Reservoir	AZL15020008-0200	Yes:	Dissolved oxygen, missing core parameters	No

Surface Water	Reach or Lake Number		On 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Chevelon Creek Black Canyon - Little Colorado River	AZ15020010-001	Yes:	Turbidity/SSC	No
Colter Creek headwaters - Nutrioso Creek	AZ15020001-293	Yes:	Missing core parameter	No
Clear Creek Reservoir	AZL15020008-0340	Yes:	Dissolved oxygen, missing core parameters	No
East Clear Creek headwaters - Yeager Canyon	AZ15020008-009	Yes:	Dissolved oxygen, missing core parameter	No
Lee Valley Reservoir	AZL15020001-0770	Yes:	Missing core parameters	No
Little Colorado River, East Fork headwaters - Hall Creek	AZ15020001-280	Yes:	Missing core parameters	No
Little Colorado River, West Fork headwaters - Government Springs	AZ15020001-013A	Yes:	Missing core parameters	No
Little Colorado River, West Fork Government Springs - Little Colorado River	AZ15020001-013B	Yes:	Copper, missing core parameters	No
Mineral Creek headwaters - Concho Creek	AZ15020002-648	Yes:	Dissolved oxygen, missing core parameter	
Rio de Flag Flagstaff WWTP - San Francisco Wash	AZ15020015-004B	Yes:	Turbidity/SSC	No
Show Low Creek headwaters - Linden Wash	AZ15020005-012	Yes:	Turbidity/SSC	No
Silver Creek headwaters - Show Low Creek	AZ15020005-013	Yes:	Dissolved oxygen, turbidity/SSC, missing core parameter	No
Woods Canyon Lake	AZL15020010-1700	Yes:	Missing core parameters	No
Middle Gila Watershed				
Gila River San Pedro River - Mineral Creek	AZ15050100-008	Yes:	Turbidity/SSC	No
Hassayampa River Copper Creek - Blind Indian Creek	AZ15070103-007B	Yes:	Escherichia coli	No
Hassayampa River Sols Wash - 8 miles below Wickenburg	AZ15070103-002A	Yes:	Escherichia coli	No
Lake Pleasant	AZL15070102-1100	Yes:	Ammonia, selenium, missing core parameter	No
Lynx Lake	AZL15070102-0860	Yes:	Lead, manganese, missing core parameters	No
Papago Park Ponds	AZL15060106B-1030	Yes:	Missing core parameters	No
Salt River Watershed				

Surface Water	Reach or Lake Number		On 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Apache Lake	AZL15060106A-0070	Yes:	Dissolved oxygen, missing core parameters	No
Bear Wallow Creek headwaters - Black River	AZ15060101-023	Yes:	Missing core parameters	No
Beaver Creek headwaters - Black River	AZ15060101-008	Yes:	Turbidity/SSC, missing core parameter	No
Big Lake	AZL15060101-0160	Yes:	Dissolved oxygen, missing core parameters	No
Black River Beaver Creek - Reservation Creek	AZ15060101-007	Yes:	Missing core parameters	No
Black River, <u>East Fork</u> headwaters - Black River	AZ15060101-009	Yes:	Missing core parameter	No
Black River, <u>West Fork</u> headwaters - Black River East Fork	AZ15060101-048	Yes:	Missing core parameters	No
Canyon Creek headwaters - Oak Creek	AZ15060103-014	Yes:	Fish kill due to fire (2002)	No
Fish Creek headwaters - Black River	AZ15060101-032	Yes:	Copper, missing core parameters	No
Rye Creek headwaters - Tonto Creek	AZ15060105-014	Yes:	Missing core parameter	No
Saguaro Lake	AZL15060106A-1290	Yes:	Missing core parameters	No
Salt River Pinal Creek - Roosevelt Lake	AZ15060103-004	Yes:	Escherichia coli, total nitrogen, suspended sediment concentration	No
Spring Creek headwaters - Tonto Creek	AZ15060105-010	Yes:	Missing core parameter	No
San Pedro - Willcox Playa - Rio Yaqui Watershed				
Copper Creek headwaters - Prospect Canyon	AZ15050203-022A	Yes:	Selenium	No
Double R Canyon Creek headwaters - Bass Canyon Creek	AZ15050203-902	Yes:	Missing core parameter	No
Ramsey Canyon Creek headwaters - Forest Road 110	AZ15050202-404A	Yes:	Missing core parameter	No
San Pedro River Mexico border - Charleston	AZ15050202-008	Yes:	Copper, selenium, suspended sediment concentration	No
San Pedro River Charleston - Walnut Gulch	AZ15050202-006	Yes:	Turbidity/SSC	No
San Pedro River Hot Springs Creek - Redfield Canyon	AZ15050203-011	Yes:	Escherichia coli, turbidity/SSC	No

Surface Water	Reach or Lake Number		On 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Whitewater Draw Unnamed trib. at 31E20'36"/109E34'46" - Mexico border	AZ15080301-002B	Yes:	Lead, missing core parameters	No
Santa Cruz - Rio Magdalena - Rio Sonoyta				
Sabino Canyon Creek headwaters - Tanque Verde Wash	AZ15050302-014B	Yes:	Missing core parameters	No
Santa Cruz River Nogales WWTP - Josephine Canyon	AZ15050301-009	Yes:	Missing core parameters	No
Santa Cruz River Tubac Bridge - Sopori Wash	AZ15050301-008B	Yes:	Missing core parameters	No
Santa Cruz River Canada del Oro - HUC boundary 15050303	AZ15050301-001	Yes:	Chlorine	No
Kennedy Lake	AZL15050302-0720	Yes:	Missing core parameters	No
Parker Canyon Lake	AZL15050301-1040	Yes:	Missing core parameters, mercury in fish tissue (2002)	No
Patagonia Lake	AZL15050301-1050	Yes:	Missing core parameters	No
Rose Canyon Lake	AZL15050302-1260	Yes:	pH (low and high), turbidity, missing core parameters	No
Upper Gila Watershed				
Ash Creek unnamed tributary at 32E45'37"/109E52'22" - Gila River	AZ15040005-040B	Yes:	Missing core parameters	No
Blue River New Mexico border - KP Creek	AZ15040004-026	Yes:	Missing core parameters	No
Blue River KP Creek - Strayhorse Creek	AZ15040004-025A	Yes:	Missing core parameters	No
Campbell Blue Creek headwaters - Blue River	AZ15040004-028	Yes:	Missing core parameter	No
Cave Creek headwaters - South Fork of Cave Creek	AZ15040006-852A	Yes:	Selenium	No
Cave Creek South Fork of Cave Creek - USFS boundary	AZ15040006-852B	Yes:	Turbidity/SSC	No
Cave Creek, <u>South Fork</u> headwaters - Cave Creek	AZ15040006-849	Yes:	Escherichia coli	No
Eagle Creek headwaters - unnamed tributary at 33E23'24"/109E29'35"	AZ15040005-028A	Yes:	Missing core parameters	No
Frye Canyon Creek headwaters - Frey Mesa Reservoir	AZ15040005-988A	Yes:	Missing core parameters	No

Surface Water	Reach or Lake Number		On 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Gila River New Mexico border - Bitter Creek	AZ15040002-004	Yes:	Selenium	No
KP Creek headwaters - Blue River	AZ15040004-029	Yes:	Missing core parameters	No
San Francisco River New Mexico border - Blue River	AZ15040004-004	Yes:	Turbidity/SSC	No
San Francisco River Blue River - Limestone Gulch	AZ15040004-003	Yes:	Escherichia coli	No
Dankworth Pond	AZL15040005-0440	Yes:	Selenium, turbidity, missing core parameters	No
Roper Lake	AZL15040005-1250	Yes:	Missing core parameter	No
Verde Watershed				
East Verde River Ellison Creek - American Gulch	AZ15060203-022B	Yes:	Selenium	No
East Verde River American Gulch - Verde River	AZ15060203-022C	Yes:	Boron	No
Pumphouse Wash headwaters - Oak Creek	AZ15060202-442	Yes:	Missing core parameters	No
Verde River Sycamore Creek - Oak Creek	AZ15060202-025	Yes:	Mercury, Escherichia coli	No
Verde River HUC boundary 15060203 - West Clear Creek	AZ15060203-027	Yes:	Escherichia coli, missing core parameters	No
Verde River Horseshoe Dam - Alder Creek	AZ15060203-008	Yes:	Missing core parameters	No
Verde River Bartlett Dam - Camp Creek	AZ15060203-004	Yes:	Selenium	No
Verde River Camp Creek - Sycamore Creek	AZ15060203-004	Yes:	Missing core parameters	No
Bartlett Lake	AZL15060203-0110	Yes:	Missing core parameters	No
J.D. Dam Lake	AZ15060202-0700	Yes:	pH (low), missing core parameters	No

Table 29. Category 1 -- Attaining All Uses

All Designated Uses are Assessed as "Attaining"

Surface Water	Reach or Lake Number	On 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern			
Bill Williams Watershed						
Trout Creek Cow Creek - Knight Creek	AZ15030201-014	No	No			
Colorado - Grand Canyon Watershed (no Category	1 waters)					
Colorado - Lower Gila Watershed						
Colorado River Bill Williams River - Osborne Wash	AZ15030104-020	No	No			
Little Colorado - San Juan Watershed (no Category 1 waters)						
Middle Gila Watershed						
Agua Fria River Sycamore Creek - Big Bug Creek	AZ15070102-023	No	No			
Agua Fria River Little Squaw Creek - Cottonwood Creek	AZ15070102-017	No	No			
Arnett Creek headwaters - Queen Creek	AZ15050100-1818	No	No			
Cave Creek headwaters - Cave Creek Dam	AZ15060106B-026A	No	No			
Hassayampa River Cottonwood Creek - Martinez Wash	AZ15070103-004	No	No			
Sycamore Creek Tank Canyon - Agua Fria River	AZ15070102-024B	No	No			
Tempe Town Lake	AZL15060106B-1588	No	No			
Salt River Watershed						
Campaign Creek headwaters - Pinto Creek	AZ15060103-037	No	No			
Cherry Creek tributary at 35E05'09"/110E56'04" - Salt River	AZ15060103-015B	No	No			
Coon Creek Unnamed tributary at 33E46'42"/110E54'25" - Salt River	AZ15060103-039B	No	No			
Deer Creek headwaters - Rye Creek	AZ15060105-018	No	No			

Surface Water	Reach or Lake Number	On 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Greenback Creek headwaters - Tonto Creek	AZ15060105-005	No	No
Haigler Creek headwaters - unnamed reach at 34E12'23.5"/111E00'11"	AZ15060105-012A	No	No
Haunted Canyon headwaters - Pinto Creek	AZ15060103-879	No	No
Pinal Creek Jesse Lane - Salt River	AZ15060103-280D	No	No
Tonto Creek Rye Creek - Gun Creek	AZ15060105-008	No	No
San Pedro - Willcox Playa - Rio Yaqui Watershed			
Aravaipa Canyon Creek Stowe Gulch - Wilderness boundary	AZ15050203-004B	No	No
Bass Canyon Creek tributary at 32E26'06"/110E13'18" - Hot Springs Canyon Creek	AZ15050203-899B	No	No
Buehman Canyon headwaters - end of Unique Waters	AZ15050203-010A	No	No
Hot Springs Canyon Creek headwaters - San Pedro River	AZ15050203-013	No	No
Rucker Canyon Creek headwaters - Whitewater Draw	AZ15080301-288	No	No
Santa Cruz - Rio Magdalena - Rio Sonoyta			
Cienega Creek Interstate 10 - Del Lago Dam	AZ15050302-006B	No	No
Redrock Canyon Creek headwaters - Harshaw Creek	AZ15050301-576	No	No
Santa Cruz River headwaters - Mexico border	AZ15050301-268	No	No
Upper Gila Watershed			
Blue River Strayhorse Creek - Gila River	AZ15040004-025B	No	No
Bonita Creek Park Creek - Gila River	AZ15040005-030	No	No
Eagle Creek Willow Creek - Sheep Wash	AZ15040005-027	No	No

Surface Water	Reach or Lake Number	On 2004 Planning List Pollutants or Parameters of Concern	On the 2004 303(d) List Pollutants or Parameters of Concern
Eagle Creek Sheep Wash - Gila River	AZ15040005-025	No	No
Verde Watershed			
Oak Creek Below Slide Rock State Park - Dry Creek	AZ15060202-018C	No	No
Verde River Unnamed reach 15060202-065 - Railroad Draw	AZ15060202-037	No	No

What is Arizona Proposing to delist from the 2002 303(d) List?

The parameters of concern being removed from the 2002 303(d) List and the reason for their removal were detailed in the assessment tables in Chapter IV. The following list provides a summary of all of the delisted parameters and surface waters.

At least one of the following criteria for delisting a pollutant or reach is shown in **Table 30**, as established in the Impaired Waters Identification Rule (Appendix B) (R18-11-605.E.2 and R18-11-604.B):

Criteria Number

- 1. EPA-approved TMDL has been developed for the pollutant;
- 2. New data indicate that the water quality standard is being met;
- 3. Change in the standard or designated use, results in the water quality standard is no longer being exceeded;
- 4. Reevaluation of the assessment information indicates an error or deficiency in the original analysis resulted in an inappropriate listing;
- 5. Pollutant loadings from naturally occurring conditions alone are sufficient to cause a violation of the water quality standard;
- 6. Reach is split and no current or historic data exists in this portion of the reach that would support a listing.

Table 30. Pollutants and Surface Waters Removed From 2002 303(d) List

Surface Water	Reach or Lake Number	Pollutant or Parameter of Concern Removed From List	Criteria For Delist	Delist Surface Water
Bill Williams Watershed				
Boulder Creek unnamed wash at 34E41'14"/113E18'00" - Wilder Creek	AZ15030202-006B	Fluoride	3 - Change in standard.	No. Remains on list due to mercury.
Alamo Lake	AZL15030204-0040	Low dissolved oxygen	2 - Current data indicates uses are being attained.	No. Remains on list due to mercury in
		Sulfide	3 - Change in standard.	fish tissue and high pH.
Colorado - Grand Canyon Watershed				
Colorado River Parashant - Diamond Creek	AZ15010002-003	Turbidity	3 - Change in standard. (Moved to Category 4D).	Yes.
Virgin River Beaver Dam Wash - Big Bend Wash	AZ15010010-003	Fecal coliform	3 - Change in standard. <i>E. coli</i> standard is being attained.	Yes.
		Turbidity	3 - Change in standard. (Moved to Category 4D).	
Colorado - Lower Gila Watershed				
Painted Rock Borrow Pit Lake	AZ15070201-1010	Fecal coliform	3 - Change in standard. <i>E. coli</i> standard is being attained.	No. Remains on list due to fish consumption advisory (DDT metabolites, toxaphene and chlordane in fish), and low dissolved oxygen.

Surface Water	Reach or Lake Number	Pollutant or Parameter of Concern Removed From List	Criteria For Delist	Delist Surface Water
Little Colorado - San Juan Watershed				
Little Colorado River Water Canyon Creek - Nutrioso Creek	AZ15020001-010	Turbidity	1 - TMDL approved in 2002	Yes.
Little Colorado River Nutrioso Creek - Carnero Wash	AZ15020001-009	Turbidity	1 - TMDL approved in 2002	Yes.
Middle Gila Watershed				
French Gulch headwaters - Hassayampa River	AZ15070103-239	Manganese	Change in standard. New manganese standard is not exceeded in the current or historic data.	No. Remains on list due to copper and zinc.
Gila River Centennial Wash - Gillespie Dam	AZ15070101-008	Turbidity	3 - Change in standard (moved to Category 4D).	No. Remains on list due to fish consumption advisory (DDT metabolites, toxaphene and chlordane in fish), boron, and selenium.
Hassayampa River headwaters - Copper Creek	AZ15070103-007A	Zinc	1 - TMDLs for cadmium, copper, and zinc approved in 2002. (Cadmium and copper were delisted in 2002; however, TMDLs had already been drafted.)	Yes.
Mineral Creek Devils Canyon - Gila River	AZ15050100-012B	Beryllium	Change in standard. New beryllium standard is not exceeded in current and historic data.	No. Remains on list due to copper and selenium.
		рН	Current data indicates uses are being attained. (Remediation activities removing contaminants.)	
		Zinc	Current data indicates uses are being attained. (Remediation activities removing contaminants.)	
Turkey Creek headwaters - tributary at 34E19'28"/112E21'28"	AZ15070102-036A	Cadmium	6 - Reach was split in 2002 due to changes in designated uses at 5000-foot elevation. All	Yes.
Headwaters - tributary at 34E1926 /112E2126		Copper	exceedances that resulted in a listing occurred in the lower reach (AZ15070102-036B).	
		Zinc	lower reacti (AZ 1507010Z-050B).	
Salt River Watershed				
Christopher Creek headwaters - Tonto Creek	AZ15060105-353	Turbidity	3 - Change in standard (moved to Category 4D).	No. Remains on list due to Escherichia coli.
Tonto Creek headwaters - unnamed tributary at 34E18'10"/111E04'14"	AZ15060105-013A	Turbidity	3 - Change in standard (moved to Category 4D).	Yes.
Tonto Creek unnamed tributary at 34E18'10"/111E04'14" - Haigler Creek	AZ15060105-013B	Turbidity	3 - Change in standard (moved to Category 4D).	Yes.
Tonto Creek Rye Creek - Gun Creek	AZ15060105-008	Turbidity	3 - Change in standard 2 - Current data shows no exceedances in 18 samples.	Yes.

Surface Water	Reach or Lake Number	Pollutant or Parameter of Concern Removed From List	Criteria For Delist	Delist Surface Water
Mule Gulch	AZ15080301-090A	Copper	6 - Reach was split in 2002 due to differences in flow	Yes.
headwaters - above Lavender Pit		рН	regime (headwaters reach is ephemeral). All exceedances that resulted in a listing occurred in the lower reaches (AZ15080301-090B and -009C).	
		Zinc	lower reacres (AZ 15000501-090B and -009C).	
San Pedro - Willcox Playa - Rio Yaqui Water	rshed (No pollutants or surfa	ace waters being delisted.)		
Santa Cruz - Rio Magdalena - Rio Sonoyta				
Alum Gulch	AZ15050301-561A	Cadmium	1 - TMDLs approved in 2003.	Yes.
headwaters - 31E28'20"/110E43'51"		Copper		
		рН		
		Zinc		
Alum Gulch 31E28'20"/110E43'51" - 31E29'17"/110E44'25"	AZ15050301-561B	Cadmium	1 - TMDLs approved in 2003.	Yes.
3162020/11064331 - 316291//11064423		Copper		
		pH		
		Zinc		
Harshaw Creek headwaters - Sonoita Creek	AZ15050301-025	Zinc	1 - TMDLs for copper, pH, and zinc were approved in 2003. (Note copper and pH were delisted in 2002; however, TMDLs had already been drafted.)	Yes.
Nogales and East Nogales Washes Mexico border - Potrero Creek	AZ15050301-011	Fecal coliform	2 - Change in standard. Now listed due to Escherichia coli exceedances.	No. Remains on list due to chlorine and Eshcerichia coli.
		Turbidity	3 - Change in standard (moved to Category 4D).	
Potrero Creek Interstate 19 - Santa Cruz River	AZ15050301-500B	Fecal coliform	3 - Change in standard. Meeting new Escherichia coli standards. (No exceedance in 15 samples.)	Yes.
Santa Cruz River Mexico border - Nogales WWTP	AZ15050301-010	Fecal coliform	3 - Change in standard. Now listed due to Escherichia coli exceedances.	No. Remains on list due to Eshcerichia coli.
Santa Cruz River Nogales WWTP - Josephine Canyon	AZ15050301-009	Fecal coliform	3 - Change in standard. Meeting new Escherichia coli standards. (No exceedance in 15 samples.)	Yes.
Santa Cruz River Josephine Canyon - Tubac Bridge	AZ15050301-008A	Fecal coliform	3 - Change in standard. Meeting new Escherichia coli standards. (No exceedance in 16 samples.)	Yes.
		Turbidity	3 - Change in standard (moved to Category 4D).	
Santa Cruz River Tubac Bridge - Sopori Wash	AZ15050301-008B	Fecal coliform	3 - Change in standard. Meeting new Escherichia coli standards. (No exceedance in 17 samples.)	Yes.
Three R Canyon	AZ15050301-558A	Cadmium	1 - TMDLs approved in 2003.	Yes.

headwaters - 31E28'35"/110E46'19"

Surface Water	Reach or Lake Number	Pollutant or Parameter of Concern Removed From List	Criteria For Delist	Delist Surface Water
		Copper		
		pH		
		Zinc		
Three R Canyon 31E28'35"/110E46'19"-31E28'27"/110E47'12"	AZ15050301-558B	Cadmium	1 - TMDLs approved in 2003.	Yes.
31620 33 /110640 19 -31620 27 /110647 12		Copper		
		рН		
		Zinc		
Three R Canyon 31E28'27"/110E47'12" - Sonoita Creek	AZ15050301-558C	Cadmium	1 - TMDLs approved in 2003.	Yes.
312021 /11024/ 12 - Soriolia Greek		Copper		
		рН		
		Zinc		
Upper Gila Watershed				
Gila River Bonita Creek - Yuma Wash	AZ15040005-022	Turbidity	3 - Change in standard (moved to Category 4D).	No. Remains on list due to Escherichia coli.
San Francisco River Limestone Gulch - Gila River	AZ15040004-001	Turbidity	3 - Change in standard (moved to Category 4D).	Yes.
Verde Watershed				
Beaver Creek Dry Beaver Creek - Verde River	AZ 15060202-002	Turbidity	3 - Change in standard (moved to Category 4D).	Yes.
Oak Creek Below Slide Rock State Park - Dry Creek	AZ15060202-018B	Turbidity	3 - Designated use changed from A&Wc to A&Ww because reach is below 5000-foot elevation. Current and historic turbidity data would not exceed former turbidity standard for A&Ww.	Yes.

Which TMDLs will ADEQ do next?

Priority Ranking and Scheduling TMDLs – The Clean Water Act and federal regulations (40 CFR 130.7) require the state to establish a priority ranking for each surface water on the 303(d) List. The criteria for this ranking and which TMDLs will be targeted for initiation within the next two years is established in the Impaired Waters Rule (R18-11-606) (**Appendix B**). Arizona's ranking system reflects the relative value and benefits of each surface water to the state and considers, among other factors:

- The severity of the impairment in relation to the designated uses, especially threats to human health, aquatic life and wildlife;
- Surface waters where endangered or threatened species exist and the pollutant is likely to further jeopardize the listed species;
- Other pertinent information such as: economic or aesthetic importance, the complexity of the TMDL, degree of public interest, permitting issues, an impending change in water quality standard or designated use, and date when the surface water was first placed on the 303(d) List.

Specific factors considered in prioritizing and scheduling impaired surface waters for TMDL development are listed as footnotes at the end of **Table 31**. As a surface water may have a mixture of high, medium, and low priority factors, the final priority ranking considers all factors but weighs some factors more heavily than others. **Table 31** indicates which factors were applied, which were weighed more heavily, and provides a brief discussion of the final priority ranking determination.

In general, the surface water was automatically listed as <u>high priority</u>, and ADEQ will initiate development of the associated TMDL within two years following EPA's approval of the 303(d) List, if there is a substantial threat to health and safety of humans, aquatic life, or wildlife. This determination was based on the following four factors:

- The magnitude of the exceedance. For example, the laboratory result was more than twice the standard.
- The duration or persistence of the problem. For example, more than half the samples exceeded standards.
- The standard was established to protect human health or wildlife from imminent harm. For example, the acute toxic Aquatic and Wildlife standards were established based on short-term exposures rather than long-term or life-time exposures.
- A Threatened or Endangered species (T&E species) may be further jeopardized by the water quality problem. This was determined by

using the following information provided by the Arizona Game and Fish Department and the US Fish and Wildlife Service:

- A T&E species has been confirmed within a mile of the surface water listed or the surface water is within "critical habitat" established for the species;
- A standard to protect aquatic and wildlife has been exceeded, and
- The published reasons for decline and vulnerability of the species indicate that the pollutant or source of the exceedance may further jeopardize this species.

Several <u>low priority</u> factors may take precedence over high priority factors because completing a TMDL at this time would either not be appropriate, be premature, or be an inefficient use of resources. These factors included:

- ADEQ has formally submitted to EPA a proposal to delist the surface water or pollutant.
- ADEQ has adopted a new surface water quality standard or designated use that is currently being reviewed by EPA for approval. When approved, the standard would no longer be violated.
- The surface water is expected to attain surface water quality standards before the next listing cycle due to:
 - Recently instituted treatment levels or best management practices in the drainage area,
 - Discharges or activities related to the impairment have ceased, or
 - Actions have been taken and the controls are in place or firmly scheduled for implementation that are likely to bring the surface water back into compliance.
- The water quality problem can be resolved only through the cooperative actions of an agency outside the state or federal jurisdiction (e.g., Mexico, another state, or Indian reservation).

EPA may also revise this schedule during its review process. Or it may become necessary to shift priority ranking of a surface water due to significant changes in resources to complete TMDLs or new information obtained concerning one of the priority factors. Such changes would be negotiated with EPA and would be made known to the public through the TMDL status page on ADEQ's web site: www.adeq.state.az.us.

Table 31. TMDL Priority Ranking and Schedule

(Based on ADEQ submission to EPA for approval in April 2004)
(See key to priority factors on p. 50)

Surface Water	Pollutant	Year	н	н	н	н	н	н	н	Т`		ΤŤ	Т	Т	/ N	T	<u>л</u> .		Ť	L	L	L	L	Ι.	T.	T	,	RANKING	TIME TABLE						
Identification	Pollutant	First Listed	1 *	2	3		5													3	4	5	6	7 *	7 8		9 9	RANKING	TIME TABLE						
Bill Williams Watershe	ed																																		
Alamo Lake 1,414 acres AZL15030204-0040	Mercury (in fish tissue)	1998 (2002 EPA)	<u>x</u>			<u>x</u>			<u>x</u>						Х	>	(Х					High priority.	Initiated monitoring and investigation in 2003. Initiate TMDL in 2004. Complete TMDL in 2005.						
A2E13030207-0040		LI A)	the co	e balo ordin	l eag ating	le (a rese	feder arch i	ally-li for po	isted otent	Thre	aten ercur	ed sp y sou	ecies rces	s) (Ha	4) and	the ee m	lake ercu	sup _l ry lis	ports stings	s sigr s in tl	nifica his w	ant s vater	port f	ishii as	ng (H	7).	ADE	a food source for EQ will be ve common	Complete TMDE in 2003.						
	рН	1996				<u>x</u>			<u>x</u>		Х					×	(Medium priority	Ongoing fixed station monitoring by US Fish and Wildlife Service. Initiate TMDL in 2008.						
			be	com	plete	d by 2	2004	. Hig	h pH		indi																	Classification is to level exceeds	Complete TMDL in 2009.						
Boulder Creek Unnamed tributary at 34E41'14"/113E18'00" -	Mercury	2004	<u>x</u>												Х	>	(Х					High priority.	Initiated monitoring and investigation in 2003. Initiate TMDL in 2004. Complete TMDL in 2005.						
Wilder Creek 29 miles AZ15030202-006B			Di: (H res	ssolv 1). B searc	ed mo oulde h for	ercur er Cre poter	y as I eek d ntial r	nigh a rains nercu	as 3. to B ury s	4 ug/l lurro (ource	L, wh Cree s for	ich is k and the th	340 Alar hree	time no La mero	ake w	chro hich sting	nic s are a s in t	tand Ilso d his w	lard, on th	and ne 30 rshed	almo (3(d)	ost 6 List	time for n	s th	e Fisl cury.	h C AD	onsi EQ v	umption standard will be coordinating ources (M5, M6).	Complete TMDL in 2005. Indard dinating						
Boulder Creek	Arsenic	1988						<u>x</u>					Х		Х	X	(Х	Х						High priority.	Arsenic, copper and zinc TMDLs are complete						
Wilder Creek - Copper Creek 3 miles AZ15030202-005A	Copper	1988	<u>x</u>					<u>x</u>					Х		Х	X	(Х								and submitted to EPA for approval in 2003.						
	Zinc	1988	<u>x</u>					<u>x</u>					Х		Х	>	(Х														
			Copper and zinc present a significant threat to wildlife due to the toxic nature of these pollutants and the magnitude of the exceedances as follows: * Dissolved copper results as high as 14,400 µg/L, which is 220 times higher than the standard (H1); * Dissolved zinc results as high as 115,000 µg/L, which is 300 times higher than the standard (H1). Boulder Creek has intermittent flow (L4). Arsenic poses a low human-health threat on this remote stream which has nominal recreation (L5). (Note: Investigations indicate that arsenic impairs the entire reach, while copper and zinc impair the segment be Wilder Creek and Butte Creek, which is below the upper tailings pile.) BLM, Arizona State Land Dept, and private land owners coordinating efforts to clean up contaminated sites.											s nominal e segment between																					
	Mercury	2004	x												Х	×	(Х					High priority.	Initiated monitoring and investigation in 2003. Initiate TMDL in 2004.						
			dra me	ains t ercury	o Bui / sou	rro Cr rces f	eek a	and A	Alamo ee m	o Lak ercur	e wh	ich ar ings ir	e als	so on s wat	the 3	03(d d as	l) List	for	mer	cury.	ΑĎ	EQ۱	will be	е со	ordin	atin	ng re	. Boulder Creek search for potential rrently there is	Initiate TMDL in 2004. Complete TMDL in 2005						

Surface Water Identification	Pollutant	Year First Listed	H H		H 4 *	H 5	H 6	H 7	H 8	M 1	M 2	M 3	M 4	M 5	M 6	L 1 *	L 2 *	L 3 *	L 4	. L	L 6	L 7 *		_	RANKING	TIME TABLE **
Burro Creek Boulder Creek - Black Canyon	Mercury	2004	<u>x</u>											Х	Х						Х				High priority.	Initiated monitoring and investigation in 2003. Initiate TMDL in 2004. Complete TMDL in 2005.
17 miles AZ15030202-004			Burro	olved r Creek ry sou	mercu drain rces f	iry as s to A or the	high lamo thre	as 3.8 Lake e mer	ug/l whic cury	L, wh ch is listin	nich is also o gs in	380 on th this	times e 303 waters	s the (d) Li shed	chro	nic st r mer	anda cury.	rd, ar ADE	nd 6 EQ v	times	the coor	Fish dina	Con: ting r	sump eseai	s). tion standard (H1). rch for potential urrently there is	Complete TMDL in 2005.
Colorado-Grand Canyo	on Watershe	d																								
Paria River Utah border - Colorado River 29 miles	Selenium	2004													<u>x</u>								Х		Medium priority.	Monitoring completed in 2001 (to support another TMDL). Initiate TMDL in 2004.
AZ14070007-123			Prior n to dete															devel	opn	nent; I	nowe	ver,	furthe	er inv	estigation is needed	Complete TMDL in 2005.
Colorado-Lower Gila V	Natershed																									
Gila River Coyote Wash - Fortuna	Boron	2004												Х						Х	Х				Medium priority.	Initiate monitoring and investigations in 2009 (ongoing fixed station monitoring).
Wash 28 miles	Selenium	2004												Х							Х					Initiate TMDLs in 2010. Complete TMDLs in 2011.
AZ15070201-003				nine so	ources	s (M5,																			s needed to a low ecological and	
Painted Rocks Borrow Pit Lake 180 acres	Dissolved oxygen	1992																	Х	X			х		Low priority.	Update feasibility study and determine need for TMDL in 2007. Initiate monitoring for TMDL in 2009 (ongoing
AZL15070201-1010			oxyger have r	n is du educe and re	ie to d d lake epres	design e level entati	and s and re wa	maint d may ater sa	enar be r imple	nce o elate es at	of this ed to s the la	shal some ake c	low la of the could	ke ar e low not b	nd su diss e col	igges olved lected	ted s l oxyo d (L4	trateg gen re). The	gies eadi e la	to im ings (l ke is r	orove .8). I no lor	wat Durir nger	er qu ng the beine	ality. e past g stoc	ed that low dissolved Drought conditions year, the lake has ked with fish and).	fixed station monitoring by US Fish and Wildlife Service). Initiate TMDL in 2010. Complete TMDL in 2012.
	DDT metabolites, toxaphene,	1988 (EPA 2002)	Х		Х									<u>x</u>					Х		Х				Medium priority.	TMDLs will be coordinated with related pesticide TMDLs in the Middle Gila.
	chlordane in fish tissue	2002)	pestici	des st	ill pre ıma c	sent a	high rail	risk t sighte	o aq d in t	uatic this a	: life a area (nd s H4).	pecie The	s tha	t prey Ls wi	y on t ill be	hem comp	(H1). olex d	Th lue t	e pes to the	ticide size	s ma	ay pro e dra	esent inage	vever, these a risk to the federally and potential L6).	Initiate monitoring and investigations in 2008. Initiate TMDLs in 2009. Complete TMDLs in 2010.
Little Colorado-San Ju	ıan Watershe	d																								
Little Colorado River Silver Creek - Carr Wash	Escherichia coli	2004	Х									Х		Х							Х				Medium priority.	Initiate monitoring and investigation in 2005. Initiate TMDL in 2006.
6 miles AZ15020002-004			wading	g in the	e wate ermin	er (H1 ing the). Ex	ceeda rce of	con	s ma tamii	y be natior	relate	ed to	wet v	veath lex a	er ev nd wi	ents Il req	(M3). uire s	. Th	ne dra tantia	inage I mor	are nitori	a is r ng da	nore t	mming or even than 8,000 square identify sources (M5,	Complete TMDL in 2007.
Little Colorado River Porter Tank-McDonalds Wash	Copper	1992	<u>x</u>				Х							Х							Х		Х		High priority.	Initiate monitoring and investigation in 2005. Initiate TMDL in 2006. Complete TMDL in 2007.
vvasn 17 miles AZ15020008-017	Silver	1992	<u>x</u>				Х							Х							Х		Х			Complete INIDE III 2007.

Surface Water Identification	Pollutant	Year First Listed	H 1 *		H 3	H 4 *	H 5	H 6	H 7	H 8	M 1	M 2	M 3					L 2 *	L 3 *	L 4	. L	5	L 6	L 7 *		L 9	RANKING	TIME TABLE **
			11 s con	ampl	es ex d tha _6).	ceed t the The L	led th meta .ittle	ne co ils ma Coloi	pper ay be rado	stan natu Rive	dard, ırally r Mult	and elev tiple	2 ou ated Obje	t of 9 (L8); ctive	9 sam ; how	iples ever,	exce	eded es a	the s nd na	ilver atura	stan I load	dard	d) (H ²	i). Da entra	ata fr tions	rom a l s need	edances (9 out of USGS study to be further H6). The nature	
Lake Mary (lower) 660 acres AZL15020015-0890	Mercury (in fish tissue)	2002	<u>x</u>						<u>x</u>											X			х			F	High priority.	ADEQ initiated TMDL monitoring and investigation in 2003. Initiate TMDL in 2004. Complete TMDL in 2004.
Lake Mary (upper) 760 acres AZL15020015-0900			long		ight, t	the la	ke h	as be	en d	ry at																	wever, due to a n sufficient water	Complete INIDE III 2004.
Middle Gila Watershe	d																											
Alvord Park Lake 27 acres AZL15060106B-0050	Ammonia	2004	<u>x</u>						<u>x</u>							Х							X			F	High priority.	Initiate monitoring and investigation in 2007. Initiate TMDL in 2008. Complete TMDL in 2009.
AZE13000100D-0030			Mor		estiga	ation	is ne	eded	to de	eterm	nine t	he s	ource	of t													ional area (H7). classify its lakes	Complete TWDE III 2003.
Chaparral Lake 13 acres AZL15060106B-0300	Low dissolved	2004							Х							<u>x</u>							X			N	Medium priority.	Initiate monitoring and investigations in 2007. Initiate TMDLs in 2008. Complete TMDLs in 2009.
AZE13000100B-0300	oxygen		oxy		nay re	esult	n fisl	h kills	and	this	lake i	is an	impo	ortan	nt urba												ow dissolved d to identify the	Complete TWIDES III 2009.
	Escherichia coli	2004							Х							<u>x</u>							X			V	Medium priority.	
			This	lake	is an	imp	ortan	t urba	an re	creat	ional	area	a (H7). M		nvesti	igatio	n is n	eede	d to	ident	tify tl	he so	urces			is prohibited. nts causing the	
Cortez Park Lake 2 acres AZL15060106B-0410	Low dissolved oxygen	2004							Х							<u>x</u>						:	х			V	Medium priority.	Initiate monitoring and investigations in 2007. Initiate TMDLs in 2008. Complete TMDLs in 2009.
	рН	2004							Х		Х	Х				<u>x</u>							x					
			(M6 may). Bo resu	th TN It in f	/IDĹs ish ki	will b	oe de nd thi	evelo _l s lak	ped a e is a	at the an im	sam porta	ne tim ant ur	ne fo ban	, which r effich recre quality	iency ation	/ (M6) al are	. Lo a (H	w disa 7). M	solve	ed ox	cygei	n and	l high	рΗ			

Surface Water Identification	Pollutant	Year First Listed	H 1 *	H 2	H 3	H 4 *	H 5	H 6	H 7		M 1	M 2		M 4	M 5			L 2 *	2 3	3	L 4	L 5	L 6	L 7 *	L 8	L 9	RANKING	TIME TABLE **
French Gulch headwaters-Hassayampa River	Copper	1994	<u>x</u>										Х		Х	Х					Х						High priority.	TMDL study ongoing. Completion TMDL in 2004.
10 miles AZ15070103-239	Zinc	1994	<u>x</u>										Х		х	х					х							
			pos * sta * 36	se a s Disso ndaro Disso of 17	signifi olved ds in olved 0 sar	cant copp 80 of zinc nples	threa er was 135 was (20%	at to was mose as mose samp meas %). T	vildlif easu oles (surec The T	e whi red a (60%) d as h	ich m is hig); nigh a . inve	ay dr h as as 22 stiga	rink po 1200 60 µg	ools r µg/L /L (al s on A	remai (almi most	ning ost 20 6 tim 3's wo	after 0 time nes th ork pla	mon es th ne ac an fo	nsoor ne aq quatio or 20	n rair quatio c and 03-2	ns o c an d wil	r win d wild Idlife	ter st dlife s stand	orms stand dard)	s (H1 dard)), and): , and d exc	of exceedances, exceeded the eeded standards in DL is expected to be	
A. Gila River 1. Salt River - Agua Fria River AZ15070101-015 2. Agua Fria River - Waterman Wash AZ15070101-014 3. Waterman Wash - Hassayampa River AZ15070101-010 4. Hassayampa River - Centennial Wash AZ15070101-009 5. Centennial Wash - Gillespie Dam AZ15070101-008 6. Gillespie Dam - Rainbow Wash AZ15070101-007 7. Rainbow Wash - Sand Tank AZ15070101-005 8. Sand Tank - Painted Rocks Reservoir B. Painted Rocks Reservoir B. Painted Rocks Reservoir AZL15070101-1020A (C. Painted Rocks Borrow Pit Lake - See Colorado-Lower Gila Watershed) D. Salt River 23 rd Ave WWTP - Gila River AZ15070103-001B E. Hassayampa River Buckeye Canal - Gila River AZ15070103-001B Total 99 miles and 100 acres	DDT metabolites, toxaphene, chlordane in fish tissue	1988 (EPA 2002)	fed	erally	prot	ected	l Yun	na cla	appe	r rail :	sight	ed in	this a	rea (H4).	This	will b	e a	very	com	plex	(TMI	DĖ du	ie to	the:	size (resent a risk to the of the drainage and storic pesticide (L6).	Initiate monitoring and investigations in 2008. Initiate TMDLs in 2009. Complete TMDLs in 2010.
Gila River Centennial Wash-Gillespie	Boron	1992							х				Х		<u>x</u>								Х				Medium priority.	Initiate monitoring and investigation in 2007. Initiate TMDL in 2008.
Dam 5 miles AZ15070101-008			imp Yui	oact a ma cl	igricu appe	ıltural r rail	crop	proc willow	duction of the state of the sta	on (H ⁱ atche	7); h er ha	owev	er, À[DEQ i	is una I in th	aware is are	e of a ea, bo	ny d oron	locur level	nent	ed ii e <u>no</u>	mpad ot exc	ts. <i>F</i> eedir	Altho ng th	ugh t ie aq	he fe	n may negatively ederally protected and wildlife water	Complete TMDL in 2009.

Surface Water Identification	Pollutant	Year First Listed	H 1 *	H 2	H 3	H 4 *	H 5	H 6	H 7	H 8	M 1	M 2	M 3	M 4	M 5	M 6		L 2 *	L 3 *	L 4	L 5	L 6	L 7 *	L 8	L 9	RANKING	TIME TABLE **
Mineral Creek Devils Canyon-Gila River 10 miles	Copper	1992	Х										Х	Х	Х				<u>x</u>	Х						Low priority.	Surface water to be in compliance with copper standards by April 2004 according to the signed consent decree.
AZ15050100-012B			be mo	en tak onthly nsent	en a basi decr	nd has to e	ave b valua Apri	een gate th	gene e eff 4 (L3	rally sectives). Co	ucce: ness pper	ssful of its exce	at mit actio edano	igatir ns. I ces a	ng thi Furth after t	is cor er er reatr	ntami nforce ment	natio men were	n (M4 t action relate	l)(L3) ons wed to). Th vill be storr	e min taker n flow	e mor if co (M3),	nitors mplia and	s mult ance d dete	ree actions have tiple sites on a is not attained per ermining the source sources (M5, L4).	Initiate monitoring and investigations in 2006. Initiate TMDLs in 2008. Complete TMDLs in 2009.
	Selenium	2004													Х					х		Х				Medium priority	
				sufficie storic i														Dete	ermini	ng th	e soi	urce o	f sele	nium	nmay	be complex due to	
Queen Creek 1. headwaters-Superior Mine WWTP 9 miles AZ15050100-014A	Copper	2002 (reach A) 2004 (reach B)											Х		<u>x</u>					Х		Х				Medium priority.	Initiate monitoring and investigation in 2004. Initiate TMDL in 2005. Complete TMDL in 2006.
2. Superior Mine WWTP - Potts Canyon AZ15050100-014B			pro ide wi	coppe obabil entify s ldlife, s ove st	ity the source the c	at cor es ar oppe	ntam nd ev	inatio aluat	n is e the	relate	d to s	storm conta	wate minat	r run ion (off ev L6).	vents Altho	s (M3) ough). Mo	ore sa er is t	mple oxic	es are to aq	need uatic	led to ife an	d			
Turkey Creek headwaters-Poland Creek	Cadmium	1992	<u>x</u>					<u>x</u>					Х	Х	Х	Х				Х						High priority.	TMDL study ongoing. Anticipate completing TMDLs in 2004.
30 miles AZ15070102-036	Copper	1992	<u>x</u>					<u>x</u>					Х	Χ	Х	Х				Х							Anticipate completing TWDLS III 2004.
	Zinc	1992	<u>x</u>					<u>x</u>					Χ	Х	Х	Х				Х							
			free * (6) * sa Th rea Th	equend Disso Disso 0%); Disso Imples ne Fore ach (Hane TMI	lved lved lved lved est S l6). DL in	excercadnr copp zinc v service vestionsegn	edan nium er wa was i e is s	ces a was r as me meas suppo n is o	is followed measured ured rting	ows (sured ed as as high the december 1)	H1): as high high gh as evelo 2003	gh as as 1; 158, ppmer	931 µ 3,600 000 µ nt of th	μg/L μg/L g/L (his T	(8 tin _ (200 (more MDL n (M6	nes to time than and and solutions	the states the n 400 lis de	anda e star time velop	rd), and ard set the bing per ex due	nd ex) and stand lans	cceed exce dard) to rea	ded stated and a media	andare stand exceed te min	ds in lards ded ne wa	1 2 of s in 3 stand aste p	magnitude and 5 samples (40%); of 5 samples dards in 3 out of 5 piles along this ne length of the flow is intermittent	
Salt Watershed																											
Canyon Lake 450 acres AZL15060106A-0250	Low dissolved oxygen	2004							Х				Х			<u>x</u>						Х				Medium priority	Initiate monitoring and investigation in 2007. Initiate TMDL in 2008. Complete TMDL in 2009.
	5.7, 9511		ne		to ide	entify	sour	ces (More data are anges in	
Christopher Creek headwaters-Tonto Creek 8 miles	Escherichia coli	2004	<u>x</u>						<u>x</u>				х									Х				High priority	Ongoing TMLD investigation. TMDL to be completed in 2004.
AZ15060105-353				creation																						extensive identify sources	

Surface Water Identification	Pollutant	Year First Listed	H 1 *	H 2	H 3		H 5	H 6	H 7		M 1					N 6			2 3	L 4	L 5	L		8		RANKING	TIME TABLE **
Crescent Lake 157 acres	рН	2002							х		х					<u>x</u>	<u> </u>					>	(Medium priority.	Initiate monitoring and investigation in 2007 Initiate TMDL in 2008.
AZL15060101-0420			im	porta	nt fis	hing a	area	and h	nigh	pH lev	els r	nay b	e ass	ocia	ted wi	th fi	sh kill	s (la		rted	fish I					6). This lake is an 7). More monitoring	Complete TMDL in 2009.
Pinto Creek Ripper Spring - Roosevelt Lake	Selenium	2004		Х																		>	(Medium priority.	Initiate monitoring and investigation in 2007 Initiate TMDL in 2008. Complete TMDL in 2009.
18 miles AZ15060105-353			Ar	n AZP	DES	perm	nit is	pendi	ing f	or a la	rge r	nining	ope	ration	n on t	his r	reach	(H2)). Mor	e dat	a are	nee	eded 1	to ide	ntify	sources (L6).	Complete TMBE III 2000.
Salt River Stewart Mnt Dam - Verde River	Low dissolved oxygen	2004							Х				Х									>	(Medium priority	Initiate monitoring and investigation in 2007. Initiate TMDL in 2008. Complete TMDL in 2009.
10 miles AZ15060106A-003	oxygen									an imp source			reation	onal a	area ((H7)	. Lov	dis	solved	оху	gen m	nay I	oe rel	ated t	o se	asonal activities (M3).	Complete TWDE III 2005.
San Pedro-Willcox Pla	ıya-Rio Yaqui	Watershed	t																								
Mule Gulch above Lavender Pit - WWTP Bisbee	Copper - 090B	2002	Х										Х		Х	<u>x</u>				х				Х		Medium priority.	Ongoing TMDL investigation and monitoring. Site-specific standard development to be completed in 2004.
1 miles AZ15080301-090B	pH - 090B	2002 (EPA)	х										Х		Х	<u>x</u>	<u> </u>			Х				Х			Complete TMDL in 2005.
Mule Gulch WWTP Bisbee - Highway 80 Bridge	Cadmium - 090C	2004	Х										Х		Х	<u>x</u>	1			Х				Х			
4 miles AZ15080301-090C	Copper - 090C	1990	Х										Х		Х	<u>x</u>	<u> </u>			х				Х			
	pH - 090C	1990	Х								Х		Х		Х	<u>x</u>	2			Х				Х			
	Zinc - 090C	1990	Х										Х		Х	<u>x</u>	2			Х				Х			
			The base named and the same states of the same stat	nese Tackgroaturalla ne mirldress opper e maç Dissol mple: Dissol 9%) ii This a	rMDL bund y occ ning of conf yed of ved of ved z n Mul rea is ink fr	s are levels urring peral tamin , and de and coppe %) in zinc we Gulds a do om re	com s of contion i ation i ation low d free r wa Mule vas a lch; ocum	nplex opper dition the second pH proper guenos as he Gulds high	due r (M: ns (M affe es. reser cy of nigh ch; n as d cor Mule	to the 3, M5, 16, L8 cted s at a sign the eas as 12 3760 ridor f	was L4,). egm gnific ccee ,000 µg/L or M	tewat L8). (ents is eant the dance µg/L ((10 ti exical n flow	er dis Curre s imp nreat es: (185 i mes i n mig	schar ntly / leme to wi times the a rant	enting Idlife Is the a quation	and and aqua c an	e, intedevelond continuous humanatic and wilcovery services.	ermitoping inuir an he ad w llife : umn vate	ttent ar g site s ng to do ealth (k idllife s standa mer mig	nd eppecial pecial peci	ohemo fic sta op ado lue to lard) a nd ex s die	eral anda ditio the and cee	flows irds the nal Be toxic exceed ded so	, lack nat ac est Ma natur eded s standa	of racour anag e of stand ards	at loading. ain, and natural at for loadings from between Practices to these pollutants and dards in 20 of 36 in 14 of 36 samples rizona's desert and gh metal content.	
San Pedro River Babocomari Creek - Dragoon Wash 17 miles	Escherichia coli	2004	х										Х		Х	х	(2	<u>x</u> x			Medium priority.	Initiate monitoring and investigation in 2005. Initiate TMDL in 2006. Complete TMDL in 2007.

AZ15050202-003

Surface Water Identification	Pollutant	Year First Listed	H H 1 2		H 4 *	H 5	H 6	H 7	H 8	M 1		M 3	M 4	M 5	M 6		L 2 *	L 3 *	L 4	. L		. !	L 7 *	L 8	L 9	RANKING	TIME TABLE **
			Exceedances of the <i>Escherichia coli</i> standard may represent a significant public health concern if people are swimming or even wading in the water (H1). Exceedances may be related to wet weather events (M3). The drainage area is relatively large and includes an area of Mexico, so determining the source of contamination may be complex and will require substantial monitoring data to identify sources (M5, L6, L7). Monitoring and investigation for the two reaches of the San Pedro River listed due to <i>Escherichia coli</i> will be coordinated (M6).																								
San Pedro River Dragoon Wash-Tres Alamos 16 miles AZ15050202-002	Nitrate	1990											х	Х				<u>x</u>								Low priority.	Ongoing Superfund Cleanup remediation activities and effectiveness monitoring in this area.
			The ADEQ WQARF (Superfund) Program is working with this site. The facility has instituted several actions to bring the surface and ground water into compliance with its standards and is conducting monthly monitoring of several sites along the San Pedro River (L3, M4). Although surface water quality is improving, cleanup will take time as there is significant contamination of the ground water which is seeping into the San Pedro (M5).															Initiate monitoring for TMDL in 2010. Initiate TMDL in 2011. Complete TMDL in 2012.									
San Pedro River Aravaipa Creek - Gila River 15 miles	Escherichia coli	2004	Х									х		Х	Х						<u>x</u>		х			Medium priority.	Initiate monitoring and investigation in 2005. Initiate TMDL in 2006. Complete TMDL in 2007.
AZ15050203-001			Exceedances of the Escherichia coli standard may represent a significant public health concern if people are swimming or even wading in the water (H1). Exceedances may be related to wet weather events (M3). The drainage area is relatively large and includes an area of Mexico, so determining the source of contamination may be complex and will require substantial monitoring data to identify sources (M5, L6, L7). Monitoring and investigation for the two reaches of the San Pedro River listed due to Escherichia coli will be coordinated (M6).																								
Santa Cruz-Rio Magda	Santa Cruz-Rio Magdalena-Rio Sonoyta Watershed																										
Cienega Creek headwaters - Gardner Canyon	Escherichia coli	2004	<u>x</u>	<u>x</u>																	Х					High priority.	Initiate monitoring and investigation in 2004. Initiate TMDL in 2005. Complete TMDL in 2006.
16 miles AZ15050302-006A			This water is classified as a Unique Water and should be protected from degradation (H3). Exceedances of the <i>Escherichia coli</i> standard may represent a significant public health concern if people are swimming or even wading in the water (H1). More monitoring and investigation is needed to determine potential sources of the bacterial contamination.																								
Lakeside Lake 15 acres AZL15050302-0760	Low dissolved oxygen	2004	<u>x</u>					<u>x</u>				Х			х											High priority.	Ongoing monitoring and investigation. TMDL will be completed in 2004.
AZL19030302-0760				this la	ike, aı																					to occasional fish to seasonal	
Nogales & East Nogales Wash	Chlorine	1996	<u>x</u>										Х										х			High priority.	Ongoing quarterly monitoring.
Mexico border-Portrero Wash 6 miles AZ15050301-011	Escherichia coli	1998	<u>x</u>										Х										х				Necessity of TMDL will be based on outcome of current international discussions.
			wading althoug wildlife Arizona infrastr	in the the (H1), a, Mexucture the bo	water water action xico, to in Morder	er (H' r is no ns to he cit exico due t	1). The ot proceed of the correction of the corr	tecte ct the f Nog dly d	ea is d for e situa ales, eterio age o	a co this ation AZ a orate	rridor use (F are c and N d and	for N 11). depe ogal l mus	Mexical Althought Indentures, So St be	an mi ugh f on o onora repla	igran fecal ongoir a, and ced.	ts wh colifo ng int d the Chlo	o ma orm a ernat Mexi rine i	y cor nd ch tional can s s sor	nsun nlorir l neg state netir	ne the argotiate of Seconds	is wate a si ions to onora	ter wignifi betward (L7 d dire	vhile icant een 7, M4 ectly	thre the l). V	sing at to U.S. Vast ne st	ming or even the desert, human health and government, evewater ream on the U.S. eans to correct the	

TMDL Schedule V- 42 Draft November 2003

Surface Water Identification	Pollutant	Year First Listed	H 1 *	H 2	H 3	H 4 *	H 5	H 6	H 7	H 8	M 1	M 2	M 3	M 4	M 5	M 6	L 1 *	L 2 *	L 3 *	L 4	L 5	L 6	L 7 *	. L		L 9	RANKING	TIME TABLE **							
Santa Cruz River Mexico border-Nogales Intl WWTP 17 miles AZ15050301-010	Escherichia coli	2002	x					<u>x</u>												х		х	×				High priority.	Stream has been dry due to drought in 2002- 2003. TMDL monitoring will be initiated when flow resumes.							
			Exceedances of the <i>Escherichia coli</i> standard may represent a significant public health concern if people are swimming or even wading in the water (H1). This area is a corridor for Mexican migrants who may consume this water while crossing the desert, although the water is not protected for this use (H1). The Friends of the Santa Cruz River, a volunteer monitoring group, is interested in maintaining high quality water in the Santa Cruz River (H6). Completing this TMDL may be complex due to probable sources in Mexico (L7), intermittent flows (L4), the current drought, and the need for more data to identify source loads (L6).															Hope to initiate TMDL monitoring by 2006. Initiate TMDL by 2007. Complete TMDL by 2008. (Note: Long-term fixed station monitoring site at the border.)																	
Sonoita Creek 750 feet below WWTP -	Zinc	2004																				Х					Low priority.	Initiate monitoring and investigation 2011. Initiate TMDL in 2012.							
Santa Cruz River 14 miles AZ15050301-013C			Zinc exceedances just above standards; therefore, they do not represent a significant ecological health concern. Source of zinc is unknown (L6); however, a wastewater treatment plant is directly upstream from the monitoring site. Discharge monitoring reports from this treatment plant will be reviewed, and if needed, water quality improvements will be pursued through enforcement actions.															Complete TMDL in 2013.																	
Upper Gila Watershed																																			
Gila River Skully Creek - San Francisco River	Selenium	2004				?									Х							Х					Medium priority	Initiate monitoring and investigation in 2006. Initiate TMDL in 2007. Complete TMDL in 2008.							
15 miles AZ15040002-001										eded MDL (etermi	ne po	otent	ial so	ource	s of s	eleni	ium (l	_6).	Soul	rces	may	be co	ming	g in f	rom New Mexico,	·							
Gila River Bonita Creek-Yuma Wash	Escherichia coli	2004	х										Х		Х	Х						Х					Medium priority	Initiate monitoring and investigation in 2006. Initiate TMDL in 2007. Complete TMDL in 2008.							
6 miles AZ15040005-022			wad so d	Complete Exceedances of the Escherichia coli standard may represent a significant public health concern if people are swimming or even wading in the water (H1). Exceedances may be related to wet weather events (M3). The drainage area is nearly 8,000 square miles, so determining the source of contamination may be complex and will require substantial monitoring data to identify sources (M5, L6). ADEQ will coordinate this investigation with the other E. coli TMDL downstream (M6).											Complete TWDL III 2000.																				
Verde Watershed																																			
Grande Wash headwaters - Ashbrook	Escherichia coli	2004	Х	Х																Х		Х					High priority	Initiate monitoring and investigation in 2004. Initiate TMDL in 2005.							
Wash 4 miles AZ15060203-991			wad	ling i	n the	wate	er (H1). Ar	n unp	ermit	ted d		rge m														ing or even s intermittent	Complete TMDL in 2006.							
Granite Basin Lake 7 acres	Low dissolved	2004							Х							<u>x</u>						Х					Medium priority	Initiate monitoring and investigation in 2004. Initiate TMDL in 2005.							
AZL15060202-0580	oxygen		be c	omp	leted	l by 2	004.	Low	diss	olved	oxyg		ay res	sult ii	n fish	kills,	, and	this I	ake is	s an	impo	rtant					Classification is to I area (H7). More								
Whitehorse Lake 41 acres AZL15060202-1630	Low dissolved oxygen	2004							Х							<u>x</u>						Х					Medium priority	Monitoring and investigation initiated in 2001. Initiate TMDL in 2005. Complete TMDL in 2006.							
	, 5		be c	comp	leted	l by 2	004.	Low	diss	olved	oxyg		ay res	sult i	n fish	kills,	, and	this I	ake is	s an	impo	rtant					Classification is to More								

X = Factor present. X = Factor present.

** Date shown is when action is to be initiated. Time table will be adjusted based on availability of flowing water, as Arizona is currently in a drought, and availability of resources to complete TMDLs.

High Priority Factors:

- H1. Substantial threat to health and safety of humans, aquatic life, or wildlife based on:
 - a. Number and type of designated uses impaired,
 - b. Type and extent of risk from the impairment to human health or aquatic life,
 - c. Pollutant causing the impairment, or
 - d. Severity, magnitude, and duration the surface water quality standard was exceeded.
- H2. An new or modified individual NPDES or AZPDES permit is sought for discharge to the impaired water.
- H3. Surface water is listed as a Unique Water or is part of an area classified as a "wilderness area", "wild and scenic river" or other federal or state special protection of the water resource.
- H4. Surface water contains a species listed as "threatened" or "endangered" under the federal Endangered Species Act and the presence of the pollutant in the surface water is likely to jeopardize the listed species.
- H5. A delay in conducting the TMDL could jeopardize ADEQ's ability to gather sufficient credible data necessary to develop the TMDL.
- H6. There is still significant public interest and support for development of a TMDL.
- H7. The surface water or segment has important recreational and economic significance to the public.
- H8. The pollutant has been listed for eight years or more (starting with the 2002 listing).

Medium Priority Factors:

- M1. The surface water fails to meet more than one designated use.
- M2. The pollutant exceeds more than one surface water quality standard.
- M3. The exceedance is correlated to seasonal conditions caused by natural events such as storms, weather patterns, or lake turnover.
- M4. Actions in the watershed may result in the surface water attaining applicable water quality standards; however, load reductions may take longer than the next 303(d) listing cycle.
- M5. The type of pollutant and other factors relating to the surface water or segment make the TMDL very complex.
- M6. ADEQ's administrative needs, including TMDL schedule commitments with EPA, permitting needs, or basin priorities that require completion of the TMDL.

Low Priority Factors:

- L1. ADEQ has formally submitted a proposal to delist the surface water or pollutant to EPA. If ADEQ makes the submission outside of listing process cycle, the change in priority ranking will not be effective until EPA approves the report.
- L2. ADEQ has modified or formally proposed a modification to the applicable surface water quality standard or designated use which would result in the surface water no longer being impaired, but the modification has not yet been approved by EPA.
- L3. The surface water is expected to attain surface water quality standards due to any of the following:
 - a. Recently instituted treatment levels or best management practices in the drainage area,
 - b. Discharges or activities related to the impairment have ceased, or
 - c. Actions have been taken and the controls are in place or scheduled for implementation that are likely to bring the surface water back into compliance.
- L4. The surface water is ephemeral or intermittent. ADEQ shall re-prioritize the surface water if the presence of the pollutant in the listed water poses a threat to the health and safety of humans, aquatic life, or wildlife using the water (H1) or the pollutant is contributing to the impairment of a downstream, perennial surface water.
- L5. The pollutant poses a low ecological and human health risk.
- L6. Insufficient data exists to determine the source of the pollutant load.
- L7. The uncertainty of timely coordination with national and international entities concerning international waters.
- L8. Naturally occurring conditions are a major contributor to the impairment.
- L9. No documentation or effective analytical tools exist to develop a TMDL for the surface water with reasonable accuracy.